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ABSTRACT

It is comnonly known that in non-homogeneous anedia (phase velocity

I dependent on location) refraction of acoustic signals occurs. Solving

the wave eauation with variable c is extremely involved and the cases

where solutions can be found do not give very much insight into the physical

meaning of the problem.

-he method of ray tracing, the solution of the eikonal equation, readily

adapts itself to non-homogeneous media and describes the propagation of

wavefronts. It has been used extensively in underwater acoustics but

not so much in atmospheric applications. Some reasons for the limited

use of ray tracing techniques in outdoor sound propagation are that

1) most acoustic work in recent years has been for underwater applications

due to Tnavy sponsoring, 2) and also that very few simultaneous measurements

of acoustical and meteorological data have been performed.

Atmospheric sound ranging technitlues have in the past neglected verticle

velocity gradients. Ray tracing is a useful method in studying propagation

I in air and can be used as an adjustment to sound ranging methods to

consider atmospheric variatiorns.

?resented here is a derivation of the eikonal equation and its solution

with an attempt to give physical reasons for this approach. A

comruter model of the technique of ray tracing for atmospheric

applications (also an eigenray model) has been developed ond

some resulti are given using data collected in field measurements.
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I

II. Introduction

The concepts presented in this paper are by no means new.

It is hoped that the approach used will help to simplify and

clarify a study that has been complicated by mathematical gymnastics. The

theory presented is rigorous but the steps are logical and it is not

assumed that the reader is already familiar with ray tracing.

Ray tracing is an approach that was developed in the field of

optics. Geometrical optics, as it is called, has been used widely in

different aspects of acoustics. It is most commonly used (in acoustics)

in the specialties of fluid dynamics, shock theory , and
2

non-linear acoustics and called the method of characteristics.

The methodology in these specialties is different than for

sound propagation theory but the approach is very similar and

the equations take the same form.

Ray tracing techniques have been used for many years in

underwater sound propagation. In recent years many acoustic

approaches have been used in meteorology. Of these SODAR (SOund

Detection And Ranging) has been used to determine acoustic rays

and from resulting data to approximate temperature profiles under

inversion conditions (increase of temperature with height).

The method of ray tracing has been promoted in the field of outdoor

sound propagation partially due to new interest in noise control.

In sound ranging applications the distance to the sound source is

different than simply the product of sound speed and travel time

in non-homogeneous media. Ray tracing is seen as a useful method in the

study of propagation paths in non-homogeneous media where refraction

.1 is present.

A brief pret.n stf will be given of the equations leading up

!
I
I



to the wave equation. The eikonal equation will be derived assuming

a series solution to the wave equation and taking the first

terms of the expansion. Solution of the eikonal equation

will be first done in the homogeneous (medium) case and then

in the non-homogeneous case. Discussion then follows concerning

caustics (high concentration of energy) and shadow zones (zones

of silence).

A general discussion of the computer models will be

presented and analysis of some data from field measurements

will be analyzed and discussed. For more information

concerning the use of the two computer programs see

Appendix C. Appendix A contains the listing of an eigenray

computer program which solves the eikonal equation for

rays that start at a given source location and pass through

a given receiver location. Appendix B contains a ray tracing

routine which takes source location and starting angles either

from the eigenray program or from some other source and

plots the resulting rays.

The present program package has been designed to analyze

ray paths over a flat terrain with specified vertical temperature

and wind profiles. Attenuation because of spherical spreading

and atmospheric absorption has been included.

Work is progressing to include ground effects and

variable topography in the package. An eigenray routine

designed for underwater use called CONGRATS (CONtinuous Gradient
5

RAy Tracing System) is being revised for atmospheric work.

CONGRATS fits a continuous gradient to a discrete profile

input. The final routine will also include the ability

to change the temperature and wind profiles in a path.
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II. Ray Tracing Theory

A. Derivation of the wave equation

For the sake of completeness the place to begin this study

is with the basic equations leading up to the wave equation.

The potential velocity is defined by

V =V 6 (1)

The approach presented here is constructed around the potential

velocity but it is noted that it can be developed around other

quantities such as velocity or pressure equally as well.

The second equation needed is a statement of Newton's

first law, that stress is equal to the negative of momentum

jflux. This is called Euler's equation and has the form
VP - -P p v/ at

0
Substituting equation (1) here and after minor manipulation,

Euler's equation for potential velocity becomes

p - p / I t + constant (2)
0

The state equation is a statement that pressure is a

function of density If expanded in a series around the ambient

density and only the first two terms are retained the linearized

state equation becomes

p " P'(p) pI 0where is the ambient density. P'(p )is equal to the square
% 0

of the propagation speed. So

p a c P (3)
is the linearized state equation to be used.

The final equation necessary to derive the wave equation

is a statement of conservation of mass called the continuity

Jequation. It states that the net flow of mass into (or out of)

a volume is equal to the net change of mass in that volume and

has the form

I
!
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V-V a -I/p ap/at
0

Substituting from equation (3) for p and from equation(l) for v,

this equation becomes
2 2

v 6 =- l/(P c ) ap/at

And substituting for p from Euler's equation (2) the wave

equat ion results 2 2 2 2

V 6 - I/c 6/at (4)

B. Derivation of the eikonal equation

The eikonal equation is a transformation of the wave equation

describing, instead of the wave itself, the propagation of wave

surfaces or wave.conts. Rays may be considered as packages of

acoustic energy travelling normal to the wavefronts. Wavefronts

are the loci of points which undergo the same motion at a given

instant.

Rays in this theory are somewhat equivalent to characteristics

in the method of characteristics used in both non-linear acoustics

and shock theory. The difference is that characteristics take 1

the role in these other specialties as carriers of discontinuities.

The theories are very closely related. In section C a solution to

the eikonal equation is developed using techniques typical of the

uiethod of characteristics.

To derive the eikonal equation we begin by defining the wavefront

by the equation

S(x,t) - 0 (5)
-4 A A A

where x - x i + x2 j + x 3k. In this analysis S has the dimension

of time and for a fixed point can be thought of as the difference

between the time that has past and the time necessary for the

wave defined by to reach that point. Therefore for

S(xt) < 0

it is seen that
4A6(x,t) - 0
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Since S is constant in reference to a location on the wave

(e.g. the wavefront), can be expanded in a series (Taylor)

of the form

(x) S /n! S>U

i - (6)
0 SOU

I It will be seen later that 6 (x) represents the variation in

magnitude of the wave, or the factor of spreading loss.

It is intended that the series solution will be substituted

into the wave equation in order to obtain equations for S and 0
n

The series of equation (6) is chosen due to the property that

when derivatives of 0 are taken the derivatives of

H S /1
n

are simply H , ie.

H'(S) - H (S)
n n-I

Since the wave equation has two derivatives the form of H for
n

negative n must be considered. If equation (6) is rewritten as

In-0 n n

and H (S) is defined as /
S /n1! S>O

H (S)
1 0 S<O

I it is noted that H (S) is simply the Heaviside function and

the H (S) are simply its integrals. Therefore, using
n

I

I
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generalized functions, H (S) for negative n can be defined where
n

H () - s s)-I

and

I (S) Vd(s)-2
etc.

Taking derivatives of equation (7) yields

00s
3 , e (x) H (S) (
n-O n n- 2 -n

(T6 O Hs C 
[I C VS)"--2 n-2n n-2n-I 2

t6= (e s t () a s)

n.O n ni n n-I1

V 6 Z ( V H (S) + a e. (S) CS) VS)
0 n n n n-1

2 2+ 0 II (S) (VS) + 6 H (S) V S
n n-2 n n-1

And therefore the wave equation becomes

R0H~ (S) tVS)-

+H CS) S - a + 2v9
n-I -2"2 n n

2
+ V 8 It (S) =0

n n



II

I

1 -7-

I Grouping like terms gives

2

{VS) 2(.) } as 0 R

I c at

I +

In general, the wave equation will be satisfied if the coefficients

of R 2, UI etc. are equal to zero. In this analysis only the first

two coefficients are considered. Therefore

22
UVS) -1 S 0 (8)

and

2Ve. VS + {VS- e W (9)
I C a

Equation (8) is called the eikonal equation. Its solution leads

directly to the concept of rays since it describes the motion of theI 4
surface S(x,t) - 0. Rays are defined as the path normal to the wave

I surface.

I

I
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C. Solution to the eikonal equation

1. General Discussion

To get a general feel for rays and what the eikonal equation

says, a perturbation approach is in order. First of all

the unit normal to the surface S is given by

A -VS
r a (10);VS1

Considering an initial position of the wavefront depicted by

S(xo,t O ) 0 (11)

and slightly perturbing all of the variables of space and time

the surface is then defined by

S(x + r s, t +6 t) - 0 (la)
0 0

Then a derivative may be approximated by a finite difference

between equations (Ila) and (11). The result is

A

rVS As +3 S At - 0-t

and the ray velocity (normal to the wavefront) is then given by

Ii. AA
At.'J At rVS

A

Substituting for r from equation (10) yields

dsin s/t (12)

dt lySI
From the eikonal equation (8) we see that

ds/dt +c
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Therefore we can say that the eikonal equation in general

Isays that a wavefront has a normal velocity or the ray has
a velocity of magnitude +c. This may appear to be a trivial

Iresult but its importance is that this does correspond

directly to the solution of the wave equation. It means

that no matter what changes in direction a wavefront

may undergo it will propagate, in isotropic media, at the

tcharacteristic phase velocity of the medium at its location.

2. Homogeneous, isotropic media

By homogeneous, it is meant that the propagation velocity

c is constant with respect to location and time or equivalently

that temperature is constant (isothermal condition) and there

is no wind. Isotropic conditions imply that c is the same

regardless of the direction of propagation. This is one of

the simplest of cases. The solution shows the equivalence

Iof the eikonal equation under conditions that will be
demonstrated later to the wave equation. It is common to

consider homogeneous, isotropic media when solving the wave

equation but the power of the ray technique is seen best when

these conditions are relaxed.

Specifying the wavefront S as

-4

S(x,t) = t - u(x) - 0 (3)

it can be seen that u(x) locates the wavefront at x for various

times. Substituting this into equations (8) and (9) yields

I 2 2(9u(x)) -1 1/c (14,)

2
and 29u(x)e 4 +7 u e - 0 (15)I0 U

I
I



-10-

Solving equation (14) then gives a solution to the eikonal equation.

Consider now the change of some quantity along the ray, ie.

the first derivative in terms of the distance a, dd. Vu(x) is
-4

normal to the wavefront. Equation (14) says that cVu(x) is unity

and therefore this represents the unit normal to the wavefront.

Multiplying this quantity by the change along x once again yields

d/ds ie.

do - cVuV() (16)

This equation says that the change along the path is equal to the

change normal to the wavefront. The so called characteristic equations

are all derived directly from equation (16). These are the derivatives

with respect to s of x, Vu, and u. Therefore

dx - cVu (17)

And since Vu is constant from equation (14)

dVu - cVu (V'(Vu)) - 0 (18)

and 2 2
du - c(Vu) - c/c - 1 (19)

Since Vu is normal to the wavefront, equation (17) shows that the

rays are also normal which is how we initially defined rays. It

is noted that in anisotropic media the rays are not necessarily
I

orthogonal to the wavefront (see section II-C-9) . Equation (18)

says that Vu is constant along the ray. It is concluded, therefore,

that the rays are straight lines, is. 7u is constant and c is
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I

I constant, therefore from equation (17), the path along the ray and

the vectorial distance vary by a constant and the rays must be

I straight lines. Equation (19) integrates to

u- s/c (20)

which means due to equation (13) that for any time t > 0 that the

wave surface t - u - s/c is at a distance ct along the ray, ie.

s - ct. These equations together state that rays can be constructed

by drawing straight lines from the initial wavefront. Figures 1

and 2 are examples of this construction showing a spherical source

I and a plane source, respectively.

3. Energy conservation and attenuation due to spreading

It is noted that equation (15) can be rewritten as

2
V.(Vu 0 0 (21)

This is in a divergence form which usually indicates the conservation

of something. It is common to think of this as an equation

showing the conservation of energy. If we consider a flow from the

wavefront W at time u - 0 to the wavefront W at time u - t as shown1 2
in figure 3 and integrate over the volume defined by a narrow tube

between the wavefronts we will obtain the constant energy flux law

and be able to find the attenuation due to the rays becoming less

dense (ie. 6spreading loss). First we use the divergence theorem

I defined by

I
I

I"I ___



Figure I Propagation from a spherical source in an homogeneous

isotropic medium
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Figure 2 - Propagaton from a plane source in an homogeneous

I isotropic di.
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Vu

Figure 3 -Ray spreading
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fff F dV ffA.ds

IV S

on the volume integral of equation (21) and obtain

I2 A
(Vu )n - 0 (22)
P 0

SIA
On the sides of the narrow tube (see figure 3) n and Vu are

orthogonal and therefore

A
7U, = 0 on the sides.

AI 2
On W and W , n and Vu are in the same and opposite direction

respectively, therefore

A V
Vu-n - I I on W

g - -VuI on W1

Also from the eikonal equation (14)IIvul - I/c
Therefore equation (22) is equivalent to

/10 dS - 0 (23)

2
and

2 1e dS - 0 (24)
Wc01

I and since c is constant in this case we may say

2 2
fiS0 dS- f$a0 dS
W IW21 0

I
IJ
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If we assuoe that we are integrating over a small package of rays

with cross-sectional areas AA , and AA 2 on W And W respectively,1 2 1 2
the integrals may be approximated by

2-* 2.
eo (x ) &A, = (x 2) A 2

This gives in the limit as &A1 and AA 2 go to zero

+ 1/2 -1/2
e (x)/8 (x) (dA IdA) =(dA /dA) (25)

0 2 0 1 1 2 2 1

The acoustic ray is the path of propagation of acoustic energy.

Equation (25) means that divergence or convergence of rays indicates

decreasing or increasing energy concentration, respectively. For

example in plane waves

dA /dA - I
2 1

ie. the cross-sectional area of a bundle of rays stays constant

along the propagation path and the rays are parallel. This indicates

that

9 -. constant
0

or that there is no spreading loss. For cylindrical and spherical rays

dA /dA - R
2 1

2
dA IdA R2 1

respectively. After substituting into equation (25) we have

-1/2
a 0c for cylindrical rays0

and
-1

a 0 &. for spherical rays.0

These terms are consistant with spreading losses associated with wave

phenomena. In a non-homogeneous medium the losses will be similar.

A ratio of sound speeds at one wavefront to the other will
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be included (ie. c c(x,y,z)) but we may assume that the

ratio will be near I and therefore can use the previous equations

for e as the spreading factor. (See section III-A for a more0
precise spreading factor dependent on range rather than the

distance travelled).

4. Prediction of Caustics

The examples presented in the last section for equation (25)

concerned divergent rays and therefore showek :xamples of

spreading loss. Another effect predicted by equation (25)

is that of caustics. Caustics arise when an initial

wavefront is concave away from the direction of propagation

causing a focusing effect as in figure 4. The cusp

shaped envelope is called a caustic. The region inside

the envelope is triply covered by rays and energy is

concentrated. On the caustic neighboring rays touch each

other and therefore the bundle of rays described in

the last section has a cross-sectional area of zero ie.

I dA/dA - 0
2 1

which predicts from equation (25) that

I
I Caustics or points in space where there is infinite

acoustic energy are also predicted by the wave equation.

The question here is whether the linearized wave equation (4)

applies in this case. It should be recognized that at

caustics there is high acoustic energy concentration but

because of non-linear effects it is not infinite.

Caustics will also be evident in non-homogeneous and

anisotropic media but are not as easily described as the

cusp shaped envelope which arises in homogeneous, isotropic

media.



Figure 4. Formation of a Caustic
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5. Non-homogenous, isotropic, stratified media

i By non-homogeneous it is meant that the phase velocity

depends on location ie. c(xyZ)

In most cases c is considered as a function of height only,

but for comparison the more general equations are presented

and then the equations for the simpler stratified case.

The only difference in the eikonal equation (14) is

that c is no longer constant. Using eq..,tion (16) will still

give the proper characteristic equations for d'/ds, d Vu /ds

I and du/ds as

dx - c7u (26)

2
dvu - cVu(Vvu) I cV'(Vu)I d

and because of the eikonal equation (14)

Iu - V. (C'-2
= y-iv( ) "-c ye

ds 2 c

I 
therefore

d g~ = -22E_(27)

ds c

and
2

du c €( u) a c 1 (28)

do c c

Since vu is normal to the wavefront equation (26) like equation (17)

says that the rays are also orthogonal to the wavef ronc.

I
I
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However, equation (27) is different than equation (18) and

says that cvu is no longer constant on a ray path and the

combination of these two equations says that the rays bend

around in response to the gradient of the phase velocity (vc).

The negative sign in equation (27) indicates that the rays bend

toward a region of lower velocity. Solving equations (26) and (27)

simultaneously, gives the rays and equation (28) gives the travel

time by

u -f do(29)

along ray

In a stratified medium these equations simplify considerably

so that they are more easily solved. In this case the phase

velocity depends only on height ie.

c - c(z)

The characteristic equations become

dx cv u dz - cV u (30)

d xy d z

dv u dV u -V c
X'y 0z z

.Z (31)
ds ds c

du 1
(32)

do c

where x and v are the horizontal components and gradient
x, y

respectively, and z and 7 are the verticle component and
z

gradient. From equation (31) 7 u is constant and fron
xy
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equation (30) we see that dx/ds gives the angle from the

horizontal that the ray makes as

4
I _

dx - cos 0 - c(z) 7 u
x,y

dsI
If a subscript zero refers to an initial point we have

cos 0
7 ut- 0 (33)x~y

C
0

and since 7 u is constant we can write the equation
x~y

Cos e - c(z)
Cos C (34)

0 0I CS

which is Snell's law in optics. From the eikonal equation

we know thatI2 2 2 2
(V u) + (Vu) - (Vu) ici xty z

and substituting from equation (33) gives

Vz _-_-_ . (35)
( C (z) c 0 (

to solve for rays the ray equations (30) may be combined into

dx - v u

z

Substituting equations (33) and (35) and integrating yields the

equation

* c(z) cos a /c
x x - 0 0 dz (36)1 f(-c (z)cos 0 /c

z 0I0
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which describes a ray with initial angle 6O at a point (x ,y ,Z ).

From equations (32) and (30) the ray travel time is given by
u a z

z z
U

or
z

U f dz (37)

Jc(z) ( - c (z) cos a c )
z 0 0
0

These last equations (36) and (37) are the basis of the model

presented in this paper. In the next section the question of when

the eikonal equation is valid is considered followed by a section

which discusses two particular phase velocity distributions.

b. Conditions of validity of the eikonal equation

It is emphasized that the eikonal equation is only an approximation

to the linearized wave equation. The word linearized is stressed so

that one is aware that the wave equation itself is not always valid

and certainly an approximation to it would not be valid under

non-linear conditions. One of these conditions, that resulting

in caustics, has already been noted in section II-C-4.
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In this section an harmonic solution to the wave equation (4) is

considered and substituted, resulting in the eikonal equation with

some descrepancy. Making this error small is the condition sought,

so that the eikonal equation will be a good approximation to the wave

equation.

First the assumption is made that the solution is time harmonic

only if the wave has reached the spatial coordinate specified. The

wavefront S as defined in equation (13) is an appropriate time

frame to consider. It is also assumed that the amplitude of the

wave may vary in space due to variations in the medium. The

solution is then of the form

6 - A(x) exp(j~is(x,t))

i - A(x) exp(jw(t - u(x)))

Substituting into the wave equation (4) the resulting equation is

2 2 2 2 2 2
V A - w A(Vu) - J(2wVA-Vu + wAV u) - -& A/c

Separating the real and imaginary parts yields

-I A + (Vu) -I 0 (38)
i wA c

and
2
V u + 2 VA.Vu - 0 (39)

I A

For u to be a solution to the eikonal equation the first part

of equation (38) must be zero. This will be so if the amplitude

of oscillation A is constant or linear in which case the second

spatial derivative of A would be zero; or if the frequency

is infinite. In general neither of these assumptions can be made.

The previous condition may be relaxed by making the first term

I
I
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in equation (38) much smaller than the second ie.

2 2
V A << (Vu)
w A

Using the eikonal equation (14) this becomes

2 2 2 2
c VA/ \ V A <<(1

(40)
-wiA '2,' A

for convenience the gradient of a function will be defined over

the distance of one wavelength so that

VF - &F/X (41)

This will transform equation (40) into

XA VA << 1 (42)

A

If this condition is met, u is a solution to the eikonal equation.

For u to also be a good approximation to the wave equation or

rather for the ray solution to be a good approximation to the

wave solution, equation (39) must also be satisfied or

2
V u - -2 VA.Vu - -2 VA I

A A c

and from equation (42) this gives

2
C7 u << 1 (43)

Taking the gradient of the eikonal equation (14) we have

2 -3
2(Vu) V u - -2 c Vc

or using the square root of the eikonal equation

2
V u -VC

c
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Substituting into equation (43) we have
AVC <<
c

or from equation (41) and knowing that changes in c are small

A Vc < Vc (44)

This is the condition sought. It states that a solution to the

eikonal equation will be a good approximation to a solution of

the wave equation if the change in the gradient of the phase

velocity over a wavelength is small compared to the gradient

itself. Therefore ray solutions are valid if there are no

large changes or discontinuities in the phase velocity profile.

7. Formation of a shadow zone in a stratified medium

It was shown in section II-C-5 that rays bend toward areas

of lower phase velocity. From this simple concept it can be

surmised that if there exists a maximum phase velocity at some

height z above a source that a shadow zone will be formed.
m

A shadow zone is an area where no acoustic energy penetrates.

.lore specifically, rays near the height z will bend either

upward or downward away from that height. This is illustrated

in figure 5. The limiting ray which defines the boundary of

the shadow zone is that ray which becomes horizontal at height

z . This ray is often called a split - beam ray since it may
m

be bent upward or downward and theoretically is handled by

coosidering that it goes both ways.

From Snell's law, equation (34) we have that

-1 -1
=cos ( cos e/ ) cos (c cos /c ) (45)I0 0 m m

So that as c increases ie as the ray nears height z , 0 will
udecrease. So that this equation is defined for all values of e

I
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z

Figure 5 -Formation of a shadow zone
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l and c, c can be chosen to be the maximum phase velocity and e
the angle at the height associated with ca

In general, if the initial angle of a ray is zero, equation

(45) says that the ray will not be horizontal again until it

i reaches a level with c - c 0 In figure 5, if the initial angle

-I

0 > cog c /c (46)
I 0 0 m

then 0 will be greater than zero and the rays will penetrate thea

level of maximum sound speed and continue upward. However, if
-I

e < cos c /c (47)I 0 0.m

the cos 0 increases to I and 8 decreases to zero at the height of

z defined by the equation

c(z) - c /cos a (48)

At this point the ray bends downward.

The critical ray is the split - beam ray. This results when

0 -0
a

which occurs when - (

0 =-con Cc/c ) (49)
0 0Om

I A critical distance along the ground may be defined where the

split - beam ray intersects the ground. It is instructive to use

a case as in figure 5 where the velocity gradient is linear up to a

maximum velocity. Equation (3b) gives us the distance travelled

in integral form Placing the sound source on the ground sets z - 0

and we can define x - 0. The phase velocity is then

0 0

I



-28-

ie. there is a linear velocity gradient. Equation (36) then

becomes

x - fAG +.Jz) dz

(I - (A + az)')

Where A = cos e . Setting r I + az and dr - adz gives0
1+az

x A r dr

a(l - A r )

I+az1__2 2)1/2

aA

After slight manipulation this reduces to

x- I (1 - A + {z + -1L f -7-2
aA a aA

which is an equation for a circle. Substituting for A gives

2 2
x - tan 0 + z + 1 1

aIl a co 
0

which is a circle centered at

(tan 0 /a, -1/a)0

with radius

R - 1/a cos e
0
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I This means that for a linear velocity gradient rays will follow

the arc of a circle.

For the distance travelled along the ground, z 0 and

2
tan8

a a Cos 0 a
0I

=1 2
tan 0

a
Therefore the ray travels horizontally

I 2 tan B

x M 0 (50)

a

I before reaching the ground again. Using equation (49) for a defines0
this distance for the critical ray by

-1

Xc a 2 tan (cos .(c /c )) 50a)

a

where a is the slope of the velocity profile.

Actually rays from the source may penetrate the shadow zone by

multiple reflections off the ground. If in addition there exists

a local maximum characteristic velocity above the maximum c,

rays may again be bent downward into the shadow zone. For a more

precise treatment one must include the effects of diffraction

which are not readily defined using rays. However, the existence

of shadow zones has been experimentally observed as low intensity
3,8

zones.

1
I
I
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8. Waveguides

Waveguides result from the existence of a raised minimum

velocity. This is illustrated in figure 6. The derivation of

this result is similar to that for the shadow zone. If the

initial angle is specified by equation (46) the ray will

penetrate into the region of higher velocity. However if

equation (47) describes the initial angle the cos 6 will

increase to I and 0 will decrease to 0 and the ray will

bend downward. At this point the ray crosses the minimum

value of c again and will repeat the pattern symmetrically

about the height of the minimum.

Waveguides are important in a discussion of ray theory

since it allows a ray to propagate for a long distance

without reflections and probable losses from ground

interactions.

9. Anisotropic, homogeneous media

In anisotropic media the phase velocity is dependent

on orientation. A simple example is when sound propagates

in a wind. The sound speed will be greater in the direction

of the wind than orthogonal to it. The eikonal equation (14)

still remains in the same form, with the phase velocity

now a vector, ie.

- 2 2
(Vu(x)) - 1/(c) (51)

In this case only homogeneous media are being considered so c is

constant. The characteristic equations arise from equation (16)
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Figure 6 - Formation of a waveguide

I
I
I
I
I



-32-

in the following form;
4

dx 4
- c(Vu.1) (52)

ds

dVu
10 (53)

ds

du dx *
- Vu. = Vu.c(Vu.I) (54)

ds ds

Equation (53) says that the gradient of u is constant making the

rays straight lines as would be assumed in a homogeneous medium.

However, the ray direction specified by equation (52) will be

parallel to the wavefront normal if and only if
cC t Vu

This will be true if and only if

+ 2 2 2 2
(c=u) - F(pI + p2 + p3) (55)

where the p i's are the components of Vu and F specifies some function.

Equation (55) says that the rays are normal to the wavefront only

in isotropic media.

Integrating equation (54) and substituting u - t locates the

wavefront at st ccessive times ie.

u - sVu.c(Vu.I)

or
t

S - (56)

Vu.c(Vu.I)

The vectorial distance is specif id by integrating equation (52) as

x l SC(VU-I) (57)

From equations (51) and (57) the unit vector in the direction of

the ray is

c(Vu.I)
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Equation (12) gives the velocity normal to the wavefront as

ds I I
a - -c

dt (Vs) IVul

Therefore the unit vector normal to the wavefront is

cVu

The angle m between the normal and the ray path can then be

I given by

cos m - c(Vu.I).(cVu) (58)

Using just the individual components of the vectors in this

expression will give the angles in each plane. Using

i expressions (58) and (56) the distance along the ray may

be specified by

ct
S .- (59)

CO8 in

This equation says that the wavefront moves along the ray with

speed c/cos m which is greater than c.

I
I
I
I
I
I
I
I
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ILI. - onputer tlode! :escription

A. Pasic development of ecuations

In the previous sections ray - theory has been

developed and discussed. This section is devoted toward

technirues used in the development of computer programs

fret the ecuations derived. There are two types of

programs to be described. These are 1) Zrarhic ray

tracing programs and 2) eigenray programs. In both

types of programs the sound velocity profile must be

specified.

Since the sound velocity as a finction of height is not I
easily measured other related units must be measured. The

sound velocity is directly proportional to the square

root of absolute temperature as iven by

1/2
c - 20.05 (T) I

where c is in meters per second and T is in degrees Felvin

(- degrees Celsius + 273.2). Since this refers to propaeation

relative to the medium we must include the wind velocity in

this forrulation so that the equation specifies propagation

relative to the ground ie.
12

c - 20.05 (T) + M, (60)

The factors T and !V can be measured using thermistors and

anerometers, resectirely and the vectorial 4irection of the wind

usic! a bi - vane. Therefore the phase veloclty as a functinn

of hieight may be specified.

In the develor-ent of the characteristic equations it

was necessary to use the vertical phase velocity Frarlient -iven

by dc/Oz. In modeling techniones it is usual to use a linear
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I difference approximation to derivatives, therefore

C -c
gi i+1 1 (61)

ili i

I where g is the gradient. Using many segments for the gradient

will approximate a smooth curve fairly well and therefore other

difference forms (e.g. logarythmic) are not used. It is

intended, however, that for a small number of values of

T and WV, to include equations from meteorological theory

to interpolate other values. The present model does not include

these interpolation methods.

The assumption for the model is that instead of a simple

stratified medium, the medium is divided into layers and

each layer has a linear gradient. We can therefore use

the equations developed earlier to derive equations for each

layer and follow individual rays from layer to layer.

Three cases must be considered: 1) the isovelocity case,

2) variable velocity when the ray penetrates the layer and

3) variable velocity when the ray is refracted back towards

its entry level. The isovelocity case is really simply the

homogeneous case discussed in section II-C-2. In this case

g - 0 and the rays are straight lines. If D is the thickners

of the layer and B is the angle of the ray upon entering the

layer the change in the x distance will be defined by

DX - D cot 0 (62)
i

From equation (20) the travel time is given by

2 2 1/2I DS (DX + D )

c c

I
1
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Horizontal rays in a homogeneous layer present a special case

that will not leave the layer and will travel straight.

When the velocity changes with height and the ray penetrates

the layer equation (36) may be used to find DX. In this case

c(z) - gz. Letting k - cos e /c we have
i i

z
i+1z gk

DX j __ ki dz

(I - (gzk))
Z

i
z
i+1

- (1 - (gzk)2) 1/2 1

gk z
i

1 ~ i+1
= sin O(z)

gk z
i

1
(sin 0 - sin ) (64)

gk

In this case the travel time is given by equation (37) as

dz
Ur -

f gz - (gk) 1/2
z

i

i+l
2 1/2

In I + (I (gkz))

9 gk~Z
z

i
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z
I zi+1

1 1 + sin e(z)
DT = - In coo_ OI g COB e(z)

z
i

D I ( + sin e )( - sin e +()DT ,, _- inI  .. .iI (65)

I 2g (1 + sin 0 )( - sin 0 )
i+1 i

The third and final case is when a ray is bent around and returns

in the direction it entered the layer. First, it is noted from

equation (48) that if the ray becomes horizontal at a point where

the phase velocity is given, the highest value of z is defined by

1 c
c(z) = Az - - i

Second, it was shown in section II-C-7 that rays travel in a

Icircular path. Also, the ray may turn before reaching the edge

of a layer. Therefore, since there is circular motion, the

height attained in a layer is given by

I
OZ = (1 - cos 0 ) (66)

gk

z
" i -Z i
cos 0

where B and z are measured at the entrance to the layer. IfI i
this difference is greater than the thickness of the layer, the

ray will not be bent around in that layer. If DZ in this equation

is less than D then DX is defined by equation (50)

2 tan 0
DX= i (50)

aI

I
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where a is the slope of the gradient given by

gin C a
ii

The time DT can then be found using equation (37) with limits of

integration z and z + DZ and doubling the result since the ray
i i

must return to its entry height. Therefore,

S I - sin 8
DT _ I + i (67)

g + sinG0

i

Equations (62), (63), (64), (65), (66), (50) and (67) form

the basis of the computer models. The total horizontal distance

and time the ray undergoes, x and t, are found by adding all the

DX's and DT's, respectively. The actual distance the ray travels, s,

is given by the sum of DS's where
2 2 1/2

DS - (D +DX ) (68)

for the homogeneous case, or because the radius of curvature is

defined by

ds
-R

de

and R was given in section II-C-7 as

I cos 9R . _ - M9
a cose0 c

i i

therefore for the non-homogeneous case
cos e

DS g i (6 -Ceo ) (68a)

c
i

In the case of atmospheric sound propagation there are only reflections

from the ground. Ground reflections are specular and handled by

taking the negative of the angle of incidence.
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The first type of program, graphic ray tracing, is constructed

from these equations and includes the reflections. The remainder

of this program consists of graphics techniques.

Input to the ray tracing program includes the temperature and

wind profiles and the location and angle of the sound source. For

rays travelling upward it is also necessary to include a maximum
height that is to be considered. This height can sometimes be

I conveniently chosen just above a raised inversion, (velocity is

greater at a greater height). Appendix B contains a graphics ray

tracing model.

gEigenray routines find rays that travel from a source location
to a specified receiver location. This is accomplished by searching

a range of angles and using a bisection method to zero in on the

I angle at the source. The program follows many rays by the method
used for ray tracing and internally varies only the source angle

until a solution is found. Once this is completed the sound field at

the receiver may be ascertained.

IIn the prediction of the sound field one must include the effects

of absorption and spreading losses. To obtain the intensity spreading

loss a solid angle Q is defined with symmetry around the z-axis so that

d Q- 2r cos e de
0 0

where the angles are specified in figure 7. The unit of intensity

will be defined by the ratio of d i to the area dA swept out by the

wave surface. From figure 7 this is

df, 2v cos 8 de

dA 2r x sin 0hdxI h
cos a do

- 0 0 (69)

Ix sinS9 dxh

I
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Figure 7 - Specification of solid angle and spreading
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The horizontal range x is a function of the height h and initial

angle e0 therefore, the horizontal unit of range is0

dx - de
as 0

Substituting this into equation (69) and taking the reciprocal of

the resulting function will yield the loss. On a log scale this is
I x sine 2x/ae

L - 10 log h 0 (70)

co 0

Equation (64) is used to find an expression for x/a0 . It was said

that x is the sum of the DX's, therefore
n

ax c sin 0 sin e - sin e
I i+1

ae cos e g
0 0° io

o+ e0  E os c 0 os e+

o 0 0
t=-0

I0 0 in 0 sin 0 + 1 0 1

coo 0 sin e as
o i-

cos cose ae+
- i+1 0 i1(71)

I sine a
0

If we differentiate Snell's law, equation (34) we have
ae csin 0 sin 0 cos

i0 c sin e coo 0 sin e

0 0 1 0 1

I
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Substitution into equation (71) and after slight manipulation we have
n

ax c sine in 1 1

sin e DXi
se D-i (72)

cos e 1 sin e sin e
0 i i+I

i-o
10

using equation (64). Therefore the intensity spreading loss is
n

x sin e sin e DX
L - 10 log n+l 0 ' i (73)

cos / sin e sin e
0 i i+

i-O

To this value the ground absorption and atmospheric absorption

must be added.

Presently ground losses are handled simply. The number of

ground reflections n is counted and multiplied by a loss coefficient,
b

L , provided by the user. It is intended to revise this by usingb
a closed form where the impedance of the ground will be specified

and phase information will be retained.

The atmospheric absorption coefficient is calculated using
IL

the American National Standard. The necessary equations are

included here for easy reference. The absorption coeffeicient is

2 -11 1/2
Alpha - f (1.84 X 10 (T/T )

0
-5/2 -2

+ (T/T ) (1.278 X 10 (exp(-2239.2/T))0
2 -1/Cf + (f If )) + 1.068 X 10 (exp(-3352/T))

r,O r,O2
/(f + (f If )))) (74)

r,N r,N

in Nepers per meter. In this equation T is the temperature in

degrees Kelvin and T is the ambient temperature equal to 293.15 K;
0
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is the frequency of the source in Hertz and f and f are

the relaxation frequencies in Hertz, for oxygen and -itrogen

respectively , and are given by

4
f - (24 + 4.41 X 10 h X ((0.05 + h)/(0.391 + h)))r,O

and (75)

f - (T/T ) (9 + 350h exp (-6.142((T/T0 )- 1)))Ir,N 0 0

In all of these equations the pressure is considered equal to the

ambient pressure and so doesn't enter into the calculations. For

the model the average value of temperature is used for T.

The variable h is the per cent humidity and can be calculated as

h - h h(p /p ) (76)

where h is the relative humidity and the ratio of saturation

pressure to ambient pressure can be calculated from

log 0(P sat/p ) - 10.79586 (1 - (T /T))10 atso 01

- 5.02808 log10 (T/T 01)

-4 -8.29692((T/T 01)-)I+1.50474 X 10 X (I -1 010

-3 4.76955(I-(T IT))
+ 0.42873 X 10 (-1 + 10 01 )

I - 2.2195983 (77)

where T 0 273.16 is the triple point isotherm temperature.I 01
The total loss is then given by

n
x sin e sin e DX

TL- I0 log 0 n+1 i (78)

cos 0 sin 0 sin 0
0 i i+1i i-0

+ Alpha x) + n L
b

We now have the basis for an eigenray routine. Appendix A

contains such a model. To graph the aigenrays, the output of the

program in Appendix A is input into the program in Appendix B.

I
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1. Eigenray routine improvements

Since the present model is for a horizontally homogeneous

medium it can be surmized that after ground reflections and

rays reach the initial height and angle the rays will follow

the same pattern. Advantage is taken of this cyclic nature to

speed up the calculation process. It is necessary to calculate

only one cycle and compare the horizontal length of the cycle to

the range.

Two types of intersection with the receiver are possible

within one cycle; 1) as the ray is upward bound and 2) as the ray

goes downward. A range of initial angles is swept through and

rays coming near the receiver location are stored.

The rays then enter a ray convergence routine. The horizontal

distance between where a ray intersects the receiver height and

the receiver range is given by

E - x - Range (79)

A new ray is traced with the starting angle

0" - e - /(E xle ) (80)

0 0 0

where 3x/3 a 0 is given by equation (72). This process will, under

favorable conditions, reduce the value of e , and is repeated until

E is smaller than a specified tolerance.

B. Some examples

The present models may be used to analyze a multitude of

situations. Only a few can be discussed here.

First to be considered is a raised maximum phase velocity.

It was shown in section II-C-7 that this would cause a shadow

zone. The question discussed here is how intense must that

maximum be to show a noticeable effect and also, what happens

nearer the ground, below the maximum, since rays will be bent
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downward. In figure 8, there is an iso-velocity situation

near the ground, and the velocity is maximum there. In the

upper portion rays are bent upward, as would be expected,

toward the lower velocity. The rays contained in the

iso-velocity layer are straight and easily penetrate into

the upper layer. Figure 9 shows a slight inversion in the

lower level. The same rays are plotted here and the plot

shows that the rays don't penetrate to the upper layer

quite as easily as before. Rays are bent downward and

trapped by the inversion. Figure 10 shows a more intense

inversion. The rays are bent as before but to the right

of the plot are more concentrated in the lower part.

Figure 11 shows this concentration more clearly. More

rays have been added between the rays in the lower

portion of figure 10. It is noted in this figure

that the upper section is much more concentrated than

the lower, indicating a much higher intensity of sound.

This point may be considered part of a caustic. It is

easily seen from this set of figures that the more

intense an inversion, the more rays may be trapped

below. This would indicate that the sound intensity

might likely be much higher in this region.

The ray tracing program may be used with a variable

terrain as seen in figure 12. The eigenray routine is

not yet capable of this. The problem is that the

techniques us~c to speed up the computation time take

advantage of the cyclic nature of rays which exists

only if there are similar conditions over the entire

terrain. Further investigation is necessary to allow

for the ability to handle variable topography and

maintain optimal use.

Table I shows the output of the eigenray routine

for an inversion condition. This is a list of the rays

I
I
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TABLE OF EIGENRAYS
TRAVEL START GROUND ATTN SPREADING TOTALTIME ANGLE REFLECTIONS LOSS LOSS LOSSI (SEC) (DEG) NO. ANGLE (DB) (DB) (DB)

0.0 5.117 2 9.120 5.38 68.19 73.57
I 0.0000 -5.117 2 9.120 5.38 68.19 73.57

0.0058 4.327 3 8.704 5.39 58.73 64.11

0.0058 -4.327 3 8.704 5.39 58.73 64.11
I0.00 74 . 807 4 8. 0 4 5.3 8 58. 55 6 3 .93

0.0074 2.807 4 8.061 5.38 58.55 63.930.0074 -2.807 4 8.061 5.38 58.55 63.93
0.0083 -1.996 5 7.817 5.38 57.72 63.10
0.0083 1.996 5 7.817 5.38 57.72 63.10
0.0090 1.406 6 7.688 5.38 56.50 61.89
0.0090 -1.406 6 7.688 5.38 56.50 61.89

3 0.0097 -0.916 7 7.614 5.38 54.42 59.80
0.0097 0.916 7 7.614 5.38 54.42 59.80

0.0102 0.391 8 7.569 5.38 48.52 53.90

0.0102 -0.391 8 7.569 5.38 48.52 53.90
0.0825 5.143 1 9.135 5.38 67.81 73.201 0.0940 4.520 2 8.801 5.39 59.12 64.51

0.1228 -0.585 8 7.582 5.38 50.26 55.64
I 0.1231 2.978 3 8.122 5.38 58.99 64.37

0.1463 2.171 4 7.863 5.38 58.35 63.73

0.1696 1.592 5 7.724 5.38 57.46 62.84

0.1952 1.135 6 7.644 5.38 56.15 61.53
0.2277 0.728 7 7.594 5.38 53.86 59.24
0.2370 -1.181 7 7.651 5.38 55.07 60.45
0.2835 0.266 8 7.564 5.38 47.29 52.671 0.3557 -1.800 6 7.770 5.38 56.91 62.29
0.5127 -2.620 5 7.998 5.38 58.01 63.40
0.7611 -4.117 4 8.602 5.39 58.25 63.63

1.2006 -5.095 3 9.108 5.39 68.62 74.00

1 Table I - List of eigenrays

I
!
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that intersect the sam receiver point specified as

nine-hundred and fifteen mters. Figure 13 Is a plot

of a number of these rays (from the ray tracing program)
and shows that in fact, they do intersect at the

specified receiver location.

..I
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IV. Summary

The purpose of this paper has been to discuss ray-tracing

techniques. The equations have been derived from basic

principles in a straight foward manner. Ray-tracing may be

used in noise control applications as well as sound ranging.

Ray solutions are good approximations to wave solutions

under the condition that the velocity gradient doesn't

change very much over a wavelength.

An analysis of the ray solution has been performed.

Caustics are formed when rays are either bent toward each

other or wavefronts have a concave profile. Linear theory

predicts that there is infinite energy at a caustic. This

is not so in reality due to non-linear effects. Caution

must be taken when reviewing output from a ray analysis.

Although the theory may predict infinite energy at a

caustic, experiments show that the amount of energy may

be very large, but not infinite.

Shadow zones occur when there exists an effective

maximum sound velocity at some height. Waveguides

occur when there is a raised minimum sound velocity.

In anisotropic media rays are not orthogonal to

wavefronts. For the present models only isotropic

media are considered. An understanding of how rays

travel in anisotropic media is enlightening to real

situations.

Computer programs have been developed to demonstrate

ray techniques and are contained in the appendices of this

paper. These programs have been used to show some examples.

The programs are presently being utilized in much

research at the 4oise Control Lab of The Pennsylavnia

State University. They are being constantly revised

for various uses.
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Appendix A

C RAY PATH CALCULATION - MAIN PROGRAM
COMMON /SX/DEP(100),VELCIOO),GRAD(99),TEMP(100),WV(100)
COMMON /R/TT(99),DB(99),ATN(99).ANGO(99),ANGS(99),ANGB(99)

COMMON /RINS(99),NB(99)
COMMON /P/TLOSS(99)
INTEGER TITLE
DIMENSION TITLE(IO),BL(IO)
READ(5,301,END-6) TITLE

READ(5,302) NDFT,NVFTNTF,NWV,NRFT,IVEL,ITEMP,IWV,IRHM
IF (CIVEL+ITEMP).EQ.O) STOP

C IF SVP DATA IS 10 BE INTERNALLY GENERATED, REPLACE 'STOP' BY
C APPROPRIATE 'GO TO' TO GENERATING ROUTINE.

WRITE(6,305) TITLEI NP -O
10 NP-NP+l

READ(5,303)DEP(NP),TEMP(NP),VEL(NP),WV(NP),NOMOI IF (NOMO.EQ.0) GO TO 10
15 CALL SSP(NP,NDFT,NVFT,NTF,NWV,IVEL,ITEMP,IWV)

READ(5,400) NBLPOR,(BL(I) ,I-1,NBL)
READC5,304) TWINI 20 READ(5 ,304) SD,TD,RANGE,ANGMAX,ANGMIN,FREQ,RHM

C IF DEPTH IN FEET
IF(NDFT.EQ.1) GO TO 61IC CONVERT TO FEET
SD-SD*3.*28
TD-TD*3 .28

61 IF (RANGE.EQ.O) GO TO 5
C IS RANGE IN FEET

IFCNRFT.EQ.1) GO TO 22
C CONVERT METERS TO KILOYARDS

RANGEoRANGE*1 .09333/1000.
GO TO 23

C CONVERT FEET TO KYARDS
22 RANGE-RANGE/3000.

23 IF(IRHM.EQ.1) GO TO 21
C DEFAULT VALUE OF RELATIVE HUMIDITY

RHM-50.I21 IF(ITEMP.EQ.O) GO TO 24
C FIND AVERAGE TEMPERATURE IN DEGREES C

AVTPO0.0
IF(NTF.EQ.O) GO TO 26

DO 27 I-1,NP
27 AVTP-(TEMP(I)-32.)*5./9.+AVTP

GO TO 28I26 DO 29 I-1,NP
29 AVTP-TEHP(I)+AVTP
28 AVTP-AVTP/NP

GO TO 31

C DEFAULT AVERAGE TEMP 20 DEGREES C

24 AVTP-2O.0
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31 CALL RAY(NP,SD,TD,RANGE,ANGMAX,ANGMIN,FREQ,NRAY,RHM,AVTP)
IF(NRAY.EQ.O) GO TO 71
CALL TTORD(NRAY)
TO'UTT( )
DO 25 I-1,NRAY

25 TTCI)-TTCI)-TO
SS-2O.*ALOGIO( 1E3*RANGE)

C IF OUTPUT IN MKS OR RES
IF(NVFT..EQ.1) GO TO 55

C CONVERT TO MKS
SD-SD* .304878
TD-TD*.*304878
RANGE-RANGE* .914634 1
WRITE(6 ,356) TITLE,SD,TD,RANGE,FREQ,ANGMAX,ANGMIN,SS ,TO
GO TO 56

55 WRITE(6 ,353) TITLE,SD,TD ,RANGE,FREQ,ANGMAX,ANGMIN ,SS,TO
56 DO 45 K-1,NBL

DO 30 I-1,NRAY
TLOSS( I)-DB( I)
IF (NB(I).EQ.O) GO TO 30
XNB-NB( I)
TLOSSCI)-DBCI)+XNB*BLOS(FREQ,POR,ANGB(I))+XNB*BL(K)+ATNCI)

30 CONTINUE
WRITE(6,450) BL(K)
WRITE(6 ,354)
WRITE(6,355) (TT(I) ,ANGO(t) ,NB(I) ,AI4GB(I),

I ATNCI) ,DB(I) ,TLOSS(I) ,I-1 ,NRAY)
CALL INTOUT(NRAY,TWIN,XIOM)

45 CONTINUE
71 IFCNRAY.EQ.O) WRITE(6,358)

6 STOP
400 FORMAT(I1 ,4X,11F5.i)
450 FORMAT(15H BOTTOM LOSS - ,F5.1,//)
301 FORMAT(10A4)
302 FORMAT(911)
303 FORMAT(4FI0.4,lX,t1)
304 FORMAT(7FI0.3)
305 FORMAT(1I1,10A4//)
353 FORMAT(1III,l0A4//

I 1H1 12HSOURICE DEPTH.F8.3,3H FT/
2 IH ,12HTARGET DEPTH,F8.3,3H FT/
3 IH ,5HRANGE,F8.3,5H KYDS//
4 1K ,4HFREQ,F7.3,4H1 KHZ/
5 lIi 9HMAX ANGLE,F6.1,41 DEG/
6 IH ,9HHIN ANGLE,F6.1,41 DEG//
7 1K lZHSPH SPP LOSS,F7.2,31 DB/
8 1K .16H1ST ARRIVAL TIME,F8.3,5H SECS//)

354 FORHAT(///,16X,18HTABLE OF EIGENRAYS//
1 1K ,20HTRAVEL START
2 35HGROUND ATTN SPREADING TOTAL/
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3 IH ,18H TIME ANGLE 0
4 36HREFLECTIONS LOSS LOSS LOSS/
5 IH *19H (SEC) (DEG)
6 35HNO. ANGLE (DB) (DB) (DB)//)

355 FORMAT(IH ,F6.4,F9.3,2X,14,F8.3,2F8.2,FIO.2/)
356 FORMAT(IHIIOA4//

I 1H .12HSOURCE DEPTH,F8.3,3H M /
2 IH 12HTARGET DEPTH,F8.3,3H M /
3 IH 5HRANGEF8.3,5H KM //
4 IH 4HFREQ,F7.3,4H KHZ/
5 IH 9HMAX ANGLEF6.1,4H DEG/
6 IH 9HMIN ANGLE,F6.1,4H DEG//
7 IH 12HSPH SPP LOSS,F7.2,3H DB/
8 IH 16HIST ARRIVAL TIMEF8.3,5H SECS//)

358 FORMAT(IOX,'NO RAYS FOUND')
END
SUBROUTINE RAY(NP,SD,TD,RANGE,ANGMAXANGMIN,FREQ,NRAY,RHM,AVTP)

C PROGRAM FINDS EIGENRAYS AND CALCULATES TRANSMISSION LOSS
C NP - NUMBER OF POINTS IN SOUND SPEED PROFILE
C SD - SOURCE DEPTH (FT)

j C TD - TARGET DEPTH
C RANGE - SOURCE- TARGET HORIZONTAL RANGE (KYDS)
C ANGMAX M MAX ANGLE SEARCHED (DEG)
C ANGMIN - MINUMUN ANGLE SEARCHED
C NRAY - NUMBER OF EIGENRAYS FOUND
C RHM - RELATIVE HUMIDITY N PER CENT
C AVTP - AVERAGE TEMPERATURE N DEGREES CELSIUS
C AUX PRINT-OUT: SW7 ON - RAY SEARCH INFO
C SW8 ON - DF-BUG

COMMON /SX/DI(100),VI(100),GI(99),TII(100),WV(100)
COMMON /R/TT(99),DB(99),ATN(99),ANO(99),ANS(99),ANB(99)
COMMON /R/LS(99),LB(99)
DIMENSION D(102),V(102),G(lOi)
DIMENSIONDD(2),ND(2)
DOUBLE PRECISION PIDVKD,CVD,THOD,SITHD,CSTHD,SITH2D,CSTH2D
DOUBLE PRECISION XD,DXDXTDRYARDDSUMDDSUMD
IPDB-2

3 IPRINT-2
PID-3.14159265358979DO
PI-SNGL(PID)

C MAX NUMBER OF RAYS (SIZE OF /R/ ARRAYS)
NRAYMX-99

C CALCULATE ATTN COEFF BY AMERICAN NATIONAL STANDARD
C CHANGE TO DEGREES KELVIN

AVTP-AVTP+273.15
C CHANGE TO HZ

FTT-FREQ*1000.

TO-293. 15
TOI-273. 16
PLR-1O.79586*(I.-(TO1/AVTP))-5.02808*ALOGI0(AVTP/TOI)+1.50474*10.*

I
I
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1.+1O.**C4.76955*(1.-CTOI/AVTP))))-2.2 195983
HM-RHM* 10.* *LR
FRO-24.+4.41*1O.**4*HM*C0.05+H)/(O.391+HM)
FRN-(TO/AVTP)**.5*C9.+350.*HM*EXP(-6.142*C(AVTP/TO)**(-1./3.)-l.))
1)

C ALPHA IN NEPERS/METER
ALPHA-FTT**2*(1.84*10.**C-11)*CAVTP/TO)**.5+(AVTP/TO)**C-5./2.)*(I
1.278*10.**(-2)*EXPC-2239.1/AVTP)/CFRO+FTT*FTT/FRO)+.1068*EXP(-3352
1 ./AVTP)/(FRN+FTT*FTT/FRN)))

C CONVERT TO DB/KYD
ALPHA-ALPllA*868. 589*3.048037*3.

C FIT SOURCE AND TARGET INTO SVP
DO 5 J-1,NP
D(J)-DI (J)
V(J)-VI(J)
IF(J.EQ.NP) GO TO 6

5 G(J)-G1(J)
6 LP-NP

I-1
IF (SD-TD) 10,11,12

10 DD(1)-SD
DD( 2) -TD
J-1
GO TO 15

11 DD(2)-SD
J-2
GO TO 15

12 DD(1)-TD
DD( 2)-SD
J-1

15 IF (DD(J)-D(I)) 20.23,24
20 LP-LP+l

IPinLP-I
DO 21 K-1,IP
L-LP-K
M-L41
D(M)-D(L)
V(H)-V(L)
IFCL.EQ.1) GO TO 26
M -L- I1

21 G(L)-G(M)
26 D(I)-DD(J)

M-1-1

ND(J)-I
22 IF (J.GE.2) GO To 35

J-2
GO TO 15

23 ND(J)-I
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GO TO 22
24 IF (I.GE.LP) GO TO 30

In-1~
GO TO 15

30 ND(J)-LP
35 IF CSD-TD) 40,41,42
40 NSD-ND(1)I NTD-ND(2)

GO TO 60
41 NSD-ND(2)

NTD-NSD
GO To 60

42 NTD-ND(1)
NSD-NDC2)

C INITIALIZE RAY TRACE
60 ANGO-ANGMAX

RYARD I E3 *RANGE
RYARDD-DBLE( RYARD)
ERRMXI1.
STEP-O. 05
NSTEP'mOII RAY -0
JRAY-O
NRAY -0

C IPRINT-1 IF SS7 ON: IPRINT-2 IF SS7 OFF
IF (IPRINT.EQ.2) GO TO 65
WRITE(6 ,802) SD,TD,RANGE,ANGMAX,ANGMIN,FREQ,ALPHA
WRITE(6 ,801)
IP-LP-1
WRITE(6,800) (I,D(I),V(I),G(I) ,I-j,IP)I WRITE(6,800) LP,D(LP),V(LP)
WRITE(6 ,950)

C START NEW RAY
65 K-NSD

C CHECK IF INITIAL RAY AT HIGHEST LIMIT
IF (K.GT.1) GO TO 70

C DOES INITIAL 'LIMIT' RAY GO DOWNWARD ?I IF (ANGO.GT.O.) GO To 205
IF ((ANGO.EQ.O.).AND.(GCI).GE.O.)) GO TO 205

C CHECK IF INITIAL RAY ON GROUND
70 IF (K.LT.LP) GO TO 75

C DOES INITIAL GROUND RAY GO UPWARD ?
IF (ANGO.LT.O.) GO TO 210
IF ((ANGO.EQ.O.).AND.(GCLP-1).LE.O.)) GO TO 210I C IS INITIAL ANGLE ZERO ?

75 IF(ABS(ANGO).GT.IE-3) GO TO 90
C IF INITIAL RAY IS SPLIT, ARBITRARILY MAKE DOWNARD

IF ((G(K-1).GT.O.).AND.(G(K).LT.0o)) GO TO 80

C IF INITIAL RAY Is DOWNARD , DECREASE ANGO SLIGHTLY
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IF CCGCK-I).LE.O.).AND.(G(K).LT.O.)) GO TO 80
C IF INITIAL RAY IS UPWARD , INCREASE ANGO SLIGHTLY

IF (CGCK-1).GT.O.).AND.CG(K).GE.O.)) GO TO 85
C MAKE SPECIAL CALCULATION IF RAY IS HORIZONTAL

GO TO 220
80 ANGO-ANGO-O.0I

GO TO 90
85 ANGO-ANGO+O.0I

C INITIALIZE ANGO, ETC
90 TlO-PI/180.*ANGO

THOD-DBLE(THO)
CSTHD-DCOS(THOD)
CSTII-SNGL(CSTHD)
CVD-DBLE(VCNSD) )/CSTHD
CV-mSNGLC CVD)
SITH-SIN(THO)
SITIIO-SITH

X-0 .0

X2-0.*0
KV1-0
KV2-0
IBUG- 90; lf(IPDB.EQ.1) WRITE(6,888) IBUG,ANGO,SITJ4,CSTH,CV

C CALCULATE ONE LAYER
100 IBUG-IQO; IF(IPDB.EQ.1) WRITE(6,888) IBUG,V(K) ,SITH,SITI12,X,XI,X2

IF (SITH.LT.O.) GO TO 110
C IF RAY GOES UPWARD BEYOND LIMIT

IF(K.LE.1) GO TO 205
105 K-K-I

DIR-I.
GRAD-G(K)
GO TO 120

C DOWNARD-GOING RAY
110 IF (K.LT.LP) GO TO 115

C REFLECTIO14 OFF GROUND
SIT H2--SIT H2
IF (KVI.NE.0) KV2-LP ; IF (KVI.EQ.0) KV1ILP
GO TO 140

115 GRAD-G(K)
K-K+l
DIR--i

C DISTANCE CALCULATION; K - NEXT LAYER
C ISO-VELOCITY ?

120 IF CGRAD.EQ.0.) GO TO 125
VKD-DBLE(V(K))
IBUGI12O; IF(IPDB.EQ.1) WRITEC6,888) IBUG,V(K),CV

C VERTEX IN LAYER K ?
IF (VKD.GT.CVD) GO TO 130
IF (VKD.EQ.CVD) GO TO 205
CSTH2-SNGL(VKD/CVD)
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SITH2WDIR*SQRT(CI .-CSTH2)*(C + H52I))
DXinCV/GRAD*(SITH2-SIT1)
GO TO 135

C ISO-VELOCITY CALCULATION1125 ID-DIR
LAST-K+I D
SITH2-SITH
CSTH2-CSTH

DX-(D(LAST)-D(K) )*CSTH2/SITH2
GO TO 135

C VERTEX CALCULATIONS1.30 ID-DIR
K-K-PID
IF (KV1.NE.O) KV2-K ;IF CKVI.EQ.O) KVI-K
SITH2--SITH

CSTH2-CSTH
DX-2.*CV/GRAD*SITH2

135 X-X+DX/3I C CHECK RAY POSITION
C RAY AT TARGET DEPTH ?

IF (K.NE.NTD) GO TO 140
IF CXI.GT.O.) X2-XI IF CXI.EQ.O.) XI-X

C RAY RETURNED TO SOURCE DEPTH?
140 IBUG-14O; IF(IPDB.EQ.1) WRITE(6,888) IBUG,V(K),SITH,SITH2,X,X1,X2I IF ((K.EQ.NSD).AND.(SITHO*SIT12.GT.O.)) GO TO 145

IF(CX.GT.CI.5*RYARD)).AND.(Xl.EQ.O.)) GO TO 205
SITH-SITH2

CSTH-CSTH2I

C CYCLE COMPLETED
145 WL-XI C CHECK 1ST INTERSECTION

IF CXl.EQ.0.) GO TO 205
N CYC -0I ERRA-XI-RYARD

150 ERRB-ERRA+WL
C MINIMUM ERROR NCYC ?

IF (ABS(ERRB).GE.ABS(ERRA)) GO TO 155I ERRA-ERRB
NCYC-NCYC+1
IF (NCYC.LT.50) GO TO 150I KIND-I
IF (IPRINT .EQ. 1) WRITE( 6,902) ANGO ,KVI ,KV2 ,NCYC,*KIND
GO TO 205

C 1ST RAY ?

155 IF CIRAY.EQ.O) GO TO 160
C THIS RAY SAME AS LAST ?

IF ((NCYC.EQ.ICYC).AND.(KV1.EQ.IVI).AND.(KV2.EQ.1V2)) GO TO 170

C IF NEW RAY, CALCULATE INTENSITY FOR LAST RAY



GO TO 280
160 IRAY-IRAY+l

ICYC-NCYC
IV1 KY I
IV 2-KY 2
ERRIY.RYARD* IE60
ERRIZ-ERRIY

165 ANGI-ANGO
ERRI-ERRA
GO TO 175

170 ERRIX-ERRIY
ERRI Y -ERRI Z
ERRIZ-ABS( ERRA)

C RANGE ERROR PASS A MAX ?
IF C(ERRIX.LT.ERRIY).AND.(ERRIZ.LT.ERRIY)) GO TO 280

C THIS RAY CLOSER TO TARGET THAN LAST ?
IF CABS(ERRA).LT.ABS(ERRI)) GO TO 165

C CHECK 2ND INTERSECTION
115 IF (X2.EQ.O.) GO TO 205

NCYC-O
ERRA-X2-RYARD

180 ERRB-ERRA+WL
IF (ABS(ERRB).GE.ABS(ERRA)) GO TO 185
ERRA-ERRB
NCYC-NCYC+l
IF (NCYC.LT.50) GO TO 180
K IND. 2
IF (IPRINT.EQ.1) WRITE(5,902) ANGO,KV1,KV2,NCYC,KIND
GO TO 205

185 IF(JRAY.EQ.O) GO TO 190
IF ((NCYC.EQ.JCYC).AND.(KVI.EQ.JV1).AND.(KV2.EQ.JV2)) GO TO 200
GO TO 285

190 JRAY-JRAY+1
JCYC-NCYC
JVI-KV 1
J V2-*KV 2
ERRJY-RYARD*1E60
ERRJZ-ERRJY

195 ANGJ-ANGO
ERRJ-ERRA
GO TO 205

200 ERRJX-ERRJY
ERRJY-eRRJZ
ERRJZ-ABS (ERRA)
IF ((ERRJX.LT.ERRJY).AND.(ERRJZ.LT.ERRJY)) GO TO 285
IF (ABS(ERRA).LT.ABS(ERRJ)) GO TO 195

C DECREMENT ANGO
205 NSTEP-NSTdP+l

STEPNoFLOAT(NSTEP)
ANGOuANGMAX-STEPN* STEP
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C DECREMENTED THRU THE RANGE ?
IF (AI4GO.GE.ANGIIIN) GO TO 65

C CONVERGE LAST I AND J RAYS
210 IJ-1

C IF NO RAYS FOUND
IF( (IRAY4JRAY4NRAY) .EQ.0) RETURN
GO TO 280

C HORIZONTAL RAY CALCULATIONI220 IF (NSD.NE.NTD) GO TO 205
ERR-0.
S-RANGE
TIMw3.*RYARD/V(K)
S P Lu20 * AL OG O( RYARD )
ATTN- AL PHA* S
NS-0

NB-O
LCYC-O
KIND-0I LV I1-K
LV 2-K
WRITE(6,951) ANGO,EKR,NS,NB,S,TIM,SPL,ATTN,LVI ,LV2,LCYC,KIND
GO TO 205

* I C ZERO IN ON TARGET AND CALCULATE INTENSITY LOSS
280 KIND-i

ANGL-ANGII LCYC-ICYC
ERRL-ERRI
LVImIVI
LV21IV2
GO TO 290

285 KIND-2
ANGLmANGJ
LCYCwJCYC
ERRLmERRJ
LV1IJV I
LV2*JV2
IF (IJ.EQ.1) IJu2

290 THOD.PID*DBLf(ANGL)/18OD0
THO-SI4GL(THOD)
ERRP-2 .*ERRL
IVTX-0

295 NS-0

INT-0
MV 10
MV2 2-0I ANGBO. 0
ANGSwO.O
xwO.0

XT-0.0
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S-0.0
TIM-O.0
su'1-O. 0
XD-ODO
XTD0ODO
SUHD-000
SITHD-DSIN(THOD)
CSTHD-DCOS(THOD)
CVD-DBLE(V(NSD) )/CSTHD
CV-SNGL( CVD)
SITHO-SNGL( SITHD)
CSTHO-SNGL( CSTHD)
TNTHO-SITHO/CSTHO
ANGLO.180. /PI*THO
TH-THO
S ITH-SITHO
CSTH-CSTHO
K-NSD

300 IF (SITH.LT.0.) GO To 310
IF (K.LE.1) GO TO 205

305 K-K-I
DIR-I.
GRAD-G(K)
GO TO 320

310 IF (K.LT.LP) GO TO 315
NB-I
IF (MVI.NE.0) 14V2-LP ; IF CMVI.EQ.0) MVI'.LP
S2'.SITH*SITH
ANGB'.I80./PI*ATAN(SQRT(S2/Cl.-S2)))
SITH2D--SITH2D
SITH2--SITH2
TH2--TH2
GO TO 355

315 GRAD-G(K)
K-K+l
DIa--l.

320 IF CGRAD.EQ.O.) GO TO 335
VKD-DBLE(V(K))GOT34

IF (VKD.GQ.CVD) GO TO 340

CSTH2D-VKD/CVD
SITH2D-DBLE(DIR)/CVD*DSQRT( (CVD-VKD)*CCVD+VKD))
CSTH2-SNGL(CSTHZD)
SITH2-SNGL(SITH2D)
TH2-ATAN( SITH2/CSTH2)

325 DXDaCVD*(SITH2D-SITHD)/tDBLE(GRAD)
DX-SNGL(DXD)
DSoCV/GRAD* CTH2-TH)
AIG'SNGL((IDO4SITH2D)/(ID0-SITH2D)*(lD0-SITHD)/(ID0+SITHD))
DTIM0. 5/GRAD*ALOG(ARG)



330 OSUMD-DXD/SITH2D/SITID
XD-XD+DXDI 3D0
X-SNGL(XD)
S-S+DS/3.
TIM-TIM+DTIM
SUHD-SUMD+DSUMD/ 3D0
SUM-SNGL( SUMD)
GO TO 345I335 ID-DIR
LAST-K+ID
T112-THI SITH2ZSITH
CSTH2-CSTH
SITH2D-SITHD
CSTH2D-CSTHDI f-D(LAST)-D(K)
DXD-DBLE(H)*CSTH2D/SITH2D
DX-SNGL( DXD)
DS-SQRT(DX*DX+H*H)
DTIM-DS/V(K)
GO TO 330

*340 ID-DIR
U K-K+ID

TII2--TH
S 1TH2--SITHI CSTH2-CSTH
S ITH2D--SITHD
CSTH2D-CSTHD
IF (MVI.NE.0) 14V2-K ;IF (MVI.EQ.O) MVI-KI GO To 325

345 IF (K.NE.NTD) GO TO 355
INT-INT+l
IF (INT.NE.KIND) GO TO 355IT-X
XT-SNGL(XTD)

£ ST-S
* TIMT-TIM

SUMT-SUM
* NST-NS
3 NBT-NB

355 IF ((K.EQ.NSD).AND.(THO*TH2.GT.O.)) GO TO 360
IF (((X.GT.(I.5*RYARD)).AND.(INT.EQ.O)).OR.(INT.GT.2)) GO TO 375
TH-TH2
SITH-SITH2
CSTH-CSTH2

* SITHD-SITH2D
* CSTHD-CSTH2D

GO TO 300
360 CYCL-FLOATCLCYC)I XD-XTD+XD*DBLE (CYCL)
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X-SNGL(XD)
ERR-SNGL(CXD-RYARDD)
IF ((MVI.NE.LVI).OR.(MV2.NE.LV2)) GO TO 378
IF (ABS(ERR).GE.ABS(ERRP)) GO To 370
SUM-S UMT+C YCL* SUM
IF (ABS(ERR).LE.ERRMX) GO TO 365
DX DTH--S UM* T NTHO
DTHO-ERR/DXDTH
DANGO-180. IPI*DTHO
IF (ABS(DANGO).GT.(LO.*STEP)) GO TO 377
THOD-THOD-DBLE( DTHO)
THO-SNGL(THOD)
ERRP-ERR
GO TO 295

365 S-ST+CYCL*S
TIM-TIM-tCYCL*TIM
SPL-10.*ALOGIO(ABS(X*SITH2*TNTHO*SUM/CSTHO))
NS-NST+LCYC*NS
N B-N BT+L CYC* NB
S-IE-3*S
ATTN -ALP HA* 5
IF (IPRINT.EQ.1) WRITE(6,951)
1 ANGLO,ERR,NS,NB,S,TIM,SPL,ATTN,LV1 ,LV2,LCYC,KIND
NRAY-NRAY+l
TT(NRAY)-TIM
DB(NRA'i)-SPL
ATN(NRAY )-ATTN
ANO (NRAY )-ANGLO
ANS (NRAY )-ANGS
ANB(NRAY)-ANGB
LS(NRAY )-NS
LB(NRAY)-NB
IF (NRAY.LT.NRAYMX) GO TO 380
WRITE(6,805)
RETURN

370 IF (IPRINT.EQ.1) WRITE(6,952) ANGL,ANGLO,LVI,LV2,LCYC,KIND
GO TO 380

375 IF CIPRINT.EQ.I) WRITE(6,953) ANGL,ANGLO,LVI,LV2,LCYCbKIND
GO TO 380

377 IF ( IPRINT.EQ.1) WRITE(6,954) ANGL,DANGOLVI,LV2,LCYC,KIND
GO TO 380

378 IF (IVTX.GE.3) GO TO 379
IVTX-IVTX+I
DTHO-DTHO/2.
THOD-THOD+DBLE(CDTHO)
THO-SNGL(THOD)
GO TO 295

379 IF (IPRINT.EQ.1) WRITEC6,955) ANGL,ANGLO,LVI,LV2,LCYC,KIND
380 IF (CIJ.EQ.1).AND.(JRAY.GT.O)) GO TO 285

IF ((IJ.EQ.2) .OR.((IJ.EQ. 1) .AND.(JRAY.EQ.O))) RETURN
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IF (KIND.EQ.1) GO TO 160
GO TO 190

800 FORMAT(IH ,12,2F10.2,F12.3)
801 FORMAT(IH ,32HSVP WITH SOURCE AND TARGET ADDED//)
802 FORMAT(IHI,12HSOURCE DEPTHF8.1,3H FT/

I IH ,12HTARGET DEPTH,F8.1,3H FT/
2 IH ,5HRANGE,F8.3.5H KYDS//
3 IH ,9HMAX ANGLEF6.1,4H DEG/
4 IH ,9HMIN ANGLE,F6.1,4H DEG//
5 IH ,9HFREQUENCY,F7.3,4H KHZ/
6 1H ,OHATTN COEFF,IPE10.2,7H DB/KYD////)

805 FORMAT(lHO,48H*** FOUND TOO MANY RAYS - DECREASE ANGMAX,ANGMIN)
902 FORMAT(IH ,F7.3,21H CYCLE LIMIT EXCEEDED,32XI5,17,I7,16//)
950 FORKAT(lHI,17X,37HTABLE OF SOUND RAY PATH INTERSECTIONS//

1 IH ,37I1INITIAL RANGE NUMBER OF RAY
2 44HTRAVEL SPREADING ATTN IST 2ND NUMBER/
3 1H ,38HANGLE ERROR REFLECTIONS LENGTH 0
4 47HTIME LOSS LOSS VERTEX VERTEX OF RAY/

5 IH ,37H (DEG) (YDS) SURFACE BOTTOM (KYDS) 0
6 49H(SECS) (DB) (DB) LAYER LAYER CYCLES TYPE//)

951 FORMAT(IH ,F7.3,F6.1,16,17,F9.2,F83,F8.2,F9.3,15,17,17,16//)
952 FORMATH ,F7.3,16H RAY DIVERGED AT,F9.3,4H DEG,24X,15,17,I7,16//)
953 FORMAT(IH ,F7.3,12H RAY LOST AT,F9.3,4H DEG,28X,15,17,17,16//)
954 FORMAT(IH ,F7.3,15H ATTEMPTED JUMP,F9.3,4H DEG,25X,I5,17,I7,16//)
955 FORMAT(.I ,F7.3,15H DIFF VERTEX AT,F9.3,4H DEG,25X,15,17,17,16//)
888 FORMAT(IHO,18/1O(IPE13.5))

END
FUNCTION BLOS(F,PTHETA)

C CALCULATES BOTTOM LOSS FROM NUWC TECH NOTE 10 (DEC 67).
C F - FREQ (KHZ), P - POROSITY, THRTA - BOTTOM GRAZING ANGLE

DIMENSION ABTLOS(14)
DATA ABTLOS(1),ABTLOS(2),ABTLOS(3),ABTLOS(4),ABTLOS(5),
I ABTLOS(6),ABTLOS(7),ABTLOS(8),ABTLOS(9),ABTLOS(1O),ABTLOS(11),
2 ABTLOS(12),ABTLOS(13),ABTLOS(14) /.16,.67,1.,1.18,1.31,1.43,1.52,
3 1.61,1.7,1*76,1.82,1.88,1.94,2./

BLOSmO.O
IF(P.LT.O.O1) RETURN
IF(F.GT.O.1) GO TO 15
FUNU=O.16

GO TO 40
15 IF(F.LT.6.5) GO TO 20

FUNUm2.0
GO TO 40

20 DO 30 1-1,7
XI-I
IF(XI*O.5.GT.F) GO TO 35

30 CONTINUE
35 IF(I.EQ.1) GO TO 45

FUNU-ABTLOS(I)+(ABTLOS(I+1)-ABTLOS(l))*(F-(XI-1.)*0o.5)/O.5
GO TO 40

I
I
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45 FUNU-ABTLOS(1 )4(ABTLOS(2)-ABTLOS(1 ))*(F-O.1)/O.4
40 ARG-1.5/P*ALOG(P*THETA/13.74)

ARG..EXP(ARG)
BLOSu(3.7+17.5*(P-.27))*FUNU*(TANH(ARG)4.(1.O-P/O.27)/12.5*

1 CTHETA/90.O)**2)
RETURN
END
SUBROUTINE INTOUT(NRAY,TWIN,XIOM)

C SUMS INTENSITY IN MOVING WINDOW TWIN SECONDS LONG.
COMMON /R/TTC99),DB(99),ATN(99),ANGO(99) ,ANGS(99),ANGB(99)
COMMON /R/NS(99),NB(99)
COMMON /P/TLOSS(99)
DIM4ENSIOU XINT(99)
XLNIO-0.23025851
XIOM--400.
WRITE(6,400) TWIN
DO 10 I-1,NRAY

10 XINT( 1)-EXP(-XLNIO*TLOSS( I))
SUM-O.
KI-1
K2-1

15 IF(TT(KI)-TT(K2)+TWIN) 30,30,20
20 T2-TT(K2)

SUM-SUM+XINT(K2)
L2-K2
K2-K2+1
GO TO 40

30 T2-TT(KI)+TWIN
SUM-SUM-XINT(KI)
LI-KI
KI-Kl+l
IFCCTT(Ll)-TT(K2)+TWIN).EQ.O.) GO TO 20

40 RCVu1O.*ALOG1O(ABS(SUM+IE-3O))
WRITE(6 ,401) T2,KI ,L2,RCV
XIOH-AMAXI (XIOM , RCV)
IF(K2.LE.NRAY) GO TO 15
WRITE(6,450) XIOM

450 FORMAT(IH ,24HHAX INTEGRATOR OUTPUT - ,FIO.2,/////)
RETURN

400 FORMAT(///,2X,17HINTEGRATOR OUTPUT//I
I Iii ,IHTIHE WINDOW,F6.3,41 SEC/I
2 IH ,23H1 TIME 1ST 2ND OUTPUT/
3 II ,22H1 (SEC) RAY RAY (DB)//)

4.01 FORMAT(IH ,F6.4,14,14,F9.2)
END
SUBROUTINE TTORD(NRAY)

C ORDERS ELGENRAYS BY TRAVEL TIMIE
COMMON /R/TT(99),DB(99),ATN(99) ,ANGO(99),AHGS(99),ANGB(99)
COMMON /R/NS(99),NB(99)
I EuN RAY -
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I DO 23 I-I,IE
Js-I+1
DO 25 J-JS,NRAY
IF CTT(J).GE.TT(I)) GO TO 25
TEMP L-TT(t)
TEMP -B )

ITEMP 4-ANGS(I)
TEMP 6-ANGB(I)
NTEMP luNS(I)I NTEMP 2-NB(I)
TT(lI)-TTCJ)
DEC I)-DB(J)
ATM ( 1) -ATN (1ANOI-NOJ
ANGO(I )-ANGO(J)
ANGS(I)-ANGS(J)I NSCI)-NSCJ)
NB( I)-NB(J)
TT(J)-TEMPI
DB(J)-TEMP2

ATN(J )-TEMP3
ANGO(J-TEMP4
ANGS(J)-TEMP5IANG B(J) -TE' P 6
NS(J)-NTEMP1
NB(J)-NTEM?2

25 CONTINUE

RETURN
END
SUBROUTINE SSP(NP ,NDFT,NVFT,NTF.,NWV ,IVEL,ITEMP, IWV)IC CALCULATE SOUND SPEED PROFILE FROM BERANAK

C D-DEPTH
C G-SOUND SPEED GRADIENTIC V-SOUND SPEED
C T-TEHP
C WV-WIND VELOCITY

COMMON/SX/DCIOO),VCIOO),G(99),T(I0O),WV(I0)IC SOUND SPEED GIVEN ?
IF (IVEL.EQ.I.) GO TO 50

C TEMP IN DEG F ?I IF (NTF.NE.I) GO TO 10
C CONVERT TEXP TO DEG C

DO 5 1-1,NP
5 T(I)inS.I9.*(TCI)-32. )

C DEPTH IN FT ?
10 IF (NDFT.NE.1) GO TO 20

C CONVERT DEPTH TO METERS

DO 15 I-1,NP
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15 D(I)-D(I)*O.3048
C WJIND VELOCITY GIVENV?

20 IF(LWV.KQ.L) GO TO 27
C ASSUME NO WIND VELOCITY

00 25 t-1,NP
25 WV(I)wO.O

C WINO VELOCITY IN METERS/SEC?
27 IF(NWV.EQ.O) GO To 30
C CONVERT TO METERS/SEC

DO 26 1-1,NP
26 XV(I)UWV(I)*.304878
C CALCULATE SOUND SPEED

30 DO 35 1-1,NP
35 V(I)-331 .4*(SQRT(I .o+O.00366*T(I)))+WV(1)
C CALCULATE SOUND SPEED GRADIENT

DO 40 1-2,NP

C IF VELOCITY INPUT IN MKS OUTPUT IN MKS
IF(NVFT.EQ.O) GO TO 45

46 DO 47 I-1,NP
V( I)eV(I)*3 .28084
D( I)-O(I)*3.28084
WV(I)-WV( I)*3.28084

IF(NVFT.EQ.O) RETURN
C PRINT PROFILE INCLUDING TEMP AND WV

WRITE (6 ,80 1)
IF-NP-I
WRITE(6,802) (,()VI,()W~)GI ImP
WRITE(6,802) %P,DCNP),V(NP) ,T(NP),WJV(NP)
RETURN

C MKS OUTPUT
'45 WRITEC6,805)

IF-NP-I
WRITE(6,802) (1,D(I) ,V(I) ,T(I),WV(r) ,G(I) ,I-I ,IF)
WRITE(6 ,802) NP,D(NP) ,V(NP) ,T(UP) ,WV(NP)
GO TO 46

C SOUND SPEED IN FPS ?
50 IF (NVFT.EQ.1) CO TO 60

C OUTPUT IN KKS UNITS
IF(NDFT) 53,70,53

53 DO 51 1-l,NP
51 D(I)-D(I)*.304878

ND FT -0
GO TO 70

C CONVERT SPEED TO FPS
52 DO 55 t-1,NP

55 VCI)-V(I)*3.28084
C DEPTH IN FT
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60 IF (NDFl.EQ.1) GO To 70I C CONVERT TO FEET
DO 65 1-1,NP

65 D(I)-D(I)*3.28084
IF(NVFT.EQ.O)RETURN

CCALCULATE SOUND SPEED GRADIENT
7U DO 75 I-2,NP

J-1-1L
75 G(J)-(V(t)-V(J))/(D(I)-DJ)

C PRINT PROFILE
C KiKS OUTPUT OR BES

IFCNVFT.EQ..) GO TO 80I WRITE(6 ,806)
IE-NP-1
WRITE(6,804)CIDIVl)(),tL )IWRITE(6,804) UP,D(NP),V(NP)
GO TO 52

80 WRITEC6,803)
IE-NP-1WRTI684
WRITE(6 ,804) UP,D(NP) ,V(NP)
RETURN

801 FORMAT(2OX,I9HSOUND SPEED PROFILE/I

I8X,26HoePTH SPEED GRADIENT/ TM V
2 9X,251{(FT) (FT/SEC) (FPS/FT)//E) F FTSC)/I802 FORM4AT(IH ,12 ,PEIO.3,OFIO.3ZIX,2FPSL.3/2XIEI3

80 FORMAT(20X,19F(SOUND SPEED PROFILE/I
I SX,26HDEPTH SPEED GRADIENT/ TM V
2 9X25H(F) (FTISEC) (:'4S/) (DC ) (/~)

I 806 FORHAT(IOX,19HSGUND SPEED PROFILE//
1 8X,26HDEPTHi SPEED GRADIENT/
2 ED 9X,25H(M') (M/SEC) (xt/S/4)(I
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C SRP-PLOT 2 PROGRAM

C COMPUTES SOUND RAY PATHS AND WRITES TAPE OR PUNCHES CARDS FOR

C PLOTTING PATHS USING CALCOMP.
C WILL TAKE UP TO 150 BOTTOM DEPTH COORDINATES AND 5 SVPS WITH A
C MAXIMUM OF 200 POINTS IN A SVP. EACH SVP MUST REACH THE SAME
C MAXIMUM DEPTH AS THE ADJACENT GIVEN SVPS.

DOUBLE-PRECISION ALPH,ANGLE(3000) ,ANGX,AQ,B,BDEP(150),BETLA,BQ,I 1 BRAN(150) ,CQ,CSTH,CSTHX,CSTH2,D(6, 100) ,DD,DDEPTH,DELR,DELX,DELY,
2 DEP(3OOO),DEPMIN,DISCDMt,DRDRFT,GC6,10O) ,GAM,GC,GI,G12,GRAD,P,
3 P2,P3,P4,R(3000) ,RA,RC,RC2 ,RMAX,RMAXL,RSVP(6) ,SAL(6, 100) ,SC,SD,
4 SITFI,SITHX,SITH2,SLOPE( 150),SR,T(6,100),TATH,TANTH,TANTHX,TC,TC2,
5 TC3,TC4,TD,TEMP,TEM2,TEM3,TEM4,TF(6, 100),THONE,TR,V(6,100),VC,VP,
6 VS,VSTP,VT,X,XBRAN,XP,Y,WV(6, 100)

* ~INTEGER-2 MA( 1000) ,MB( 1000) ,MC( 1000)
U INTEGER IGSVP(6,250),NPSVP(6),GRAPH/O/

REAL DQ(6,1000),QD(6) ,PI/3.141593/
* LOGICAL*l TITLE(40),ALPD(20),TSVP(5)I FUNC(A,B,C,D,E) - A + (B -C)*(E - A)/(D - C)

DATA TSVP/'5,'V','P', '
CALL NOPRQ
CALL INITQ(MA,MB,MC,DQ,1000)I10 READ(5,701) TITLE
HTMIN-0 .00
HTMAX-100.0

C

READ(5,/U2) NRSVPS,NRBOT,METER,NAUT,DELR,NOUT,NEWSVP,NOPR,NOAD,
1 NRAN,RANINC, RANL,NDEP, DEPING ,DEPL ,NSV,SVINC,SVL,SVMIN,RANGE

IF(NOUT.LT.71) GO TO 14
CALL STSWQ(564,71)

14 IF(NOAD.LT.1) Go TO 16I READ(5,701) ALPD
16 IF(NEWSVP.LT.1) GO TO 133

DO 128 NR - 1,NRSVPS
READ(5 ,703) NODEP ,NODFT,NOTEMP,NOTF,NOVEL,NOVFT,NOSALI NSVP - 1

20 READ(5,704) D(NR,NSVP),TF(NR,NSVP),WV(NR,NSVP),SAL(NR,NSVP),
I IGSVP(NR,NSVP),NOMOI D(NR,NSVP)inHTMAX-(D(NR,NSVP)-HTMIN)
IF(NOMO.GT.0) GO TO 24
NSVP -NSVP + 1I GO TO 20

24 DO 97 I-1,NSVP
97 V(NR,I)-331 .4*(DSQRT(1 .0+O.00366*TF(NR,I)))+WV(NR,I)
98 J -NSVP - I

C CALCULATE VELOCITY GRADIENTS
CI DO 103 1 - 1,J
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GCNR,I) -(V(NR,I+1) - V(NR,I))/(D(NR,1+1) -D(NR,I))

IF(DABS(G(NR,I)).GE.O.0002) GO TO 103
G(NR I) - 0.0

103 CONTINUE
G(NR,NSVP) - G(NR,NSVP-1)
IB -
NPAGE - 1

107 WRITE(6, 705) NPAGE,TITLE,NR,NSVP
IF(NOVEL.LT.1) GO TO 110
WRITE(6 ,706)

110 WRITE(b,707) NR
IL - lB + 21
IF(IL.LE.J) GO TO 114
IL - J

114 IF(NOTEMP.GT.0) GO TO 117
WRITE(6,708) (D(NR,I),TF(NR,I),SAL(NR,t) ,V(NR,I),G(NR,I),

I Ia IB,IL)
GO TO 118

117 WRITE(6,709) (D(NR,I),V(NR,I),G(NR,I), I -IB,IL)
!18 IB - IL + I

IF(IB.GT.J) GO TO 123
WRITE(6 ,710)
NPAGE - NPAGE + 1
GO TO 107

123 IF(NOTE1MP.GT.O) GO TO 126
WRITE(b, 708) D(NR,NSVP) ,TF(NR,NSVP) ,SAL(NR,NSVP) ,V(NR,NSVP)
GO TO 127

126 WRITE(6,709) D(NR,NSVP) ,V(NR,NSVP)
127 NPSVP(NR) - NSVP
128 CONTINUE

C
C LABEL PLOTS*****************
C

DO 132 1I 1,NSVP
D(NRSVPS+1,1) - D(NRSVPS,I)
G(NRSVPS+1,t) - G(NRSVPS,I)

132 V(NRSVPS+1,1) - V(NRSVPS,I)
133 DISH a fl.5*(WA'L +FLOAT(NRSVPS)*(SVL + 1.0))

CALL XFSTQ(DISHi, I.b,O.24,O.26,O.O,O.O,QD)
CALL LABLQ(TITLE ,-40 ,QD,GRAPH ,40)
DISSR - RANL/2.O
IF(NOAD.LT.1) GO TO 143
CALL XFSTQ(DISSR - 1.7,0.95,0.18,O.20,0.0,O.O,QD)
CALL LA8LQ(5 SOUND RAY PATHS - INTENSITY CONTOURS',-38,QD,GRAPH,38)
CALL XFSTQ(DISSR + 3.7,0.95,0.15,O.16,O.0,O.O,QD)
CALL LABLQ(ALPD ,-20,QD,GRAPH ,20)
GO TO 145

143 CALL XFSTQ(DISSR,O.95,0. 18,O.20,O.0,0.O,Q D)
CALL LABLQ('SOUND RAY PATHS',-15,QD,CIRAPH,15)

145 ( LL XFSTQ(DISSR,O.6,0.18,0.20),0.O,O.O),QO))
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IF(NAUT.EQ.O) GO TO 149
CALL LABLQ('RANGE - NAUTICAL MILES',-22,QD,GRAPH,22)
CO TO 150

149 CALL LABLQ('RANGE - METERS',-14,QD,GRAPH,14)
150 CALL XFSTQ(O.O,O.O,1 .O,1.O,O.O,O.O,QD)

CALL AXISQ(RANL,NRAN,O.O,RANINC,-O. 13,-i ,QD,GRAPH)
CALL DISPQ(GRAPH,200.O)
CALL REMVQ(GRAPH)
DELSV FLOAT(NSV)*SVINC/SVL

DELDEP -FLOAT(NDEP)*DEPINC/DEPL

DELRAN -FLOAT(NRAN)*RANINC/RANL

C DRAW SOUND VELOCITY PROFILES5 DO 194 M - 1,NRSVPS
AM - M - 1
DISSV - RANL + SVL/2.O + 1.0 + AM*(SVL + 1.0)
CALL XFSTQ(DISSV,O.99,O. 18,O.20,O.O,O.O,QD)

IF(NRSVPS.LT.2) GO TO, 165
CALL EDINCH(M,TSVP(5),1)
CALL LABLQ(TSVP,-5,QD,GRAPH,5)I GO TO 166

165 CALL LABLQ('SVP',-3,QD,GRAPH,3)
166 CALL XFSTQ(DISSV.,O.55,O. 18,O.20,O.0,0.O,QD)

CALL LABLQ(.'VELOCITY - M/SEC',-17,QD,GRAPH,17)

DISVP - RANL + 1.0 + A1M*(SVL + 1.0)
CALL XFSTQ(DISVP,O.O,1.0,1 .O,O.0,O.0,QD)
CALL AXISQ(SVL,NSV,SVMIN,SVINC,-0.13,-1 ,QD,GRAPH)I DISSD -RANL + SVL + 1.0 + AM*(SVL + 1.0)
CALL XFSTQ(DISSD,O.0,I .O,1.O,1.5*PI,O.O,QD)
CALL AXISQ(DEPL,NDEP,O.O,DEPINC,-0.13,-1 ,QD,GRAPH)
DISDH - DISSD + 0.52

DISD = DEPL/2.O
CALL XFSTQ(DISDH,-DISD,O. 18,0.20,1 .5*PI,0.O,QD)
CALL LABLQ('HEIGHT - METERS',-15,QD,GRAPH,15)IDSVP - RANL + (VCX,1) - SVMIN)/DELSV + 1.0 + AM*CSVL+1.0)
CALL XFSTQ(DSVP,-0.02,O. 18,0.20,0.0,0.0,QD)
CALL LABLQC'0',-1,QD,GRAPH,l)
CALL ADPTQ(DSVP ,0 .0,1 IGRAPHi)

NSP-NPSVP(M4)
DO 191 1 - Z,NSVP

DSP-RANL + (V(M,I) - SVMIN)/DELSV + 1.0 + AM*(SVL + 1.0)

CALADPTQ(OS VP ,DE'P, 1, GRAPH)
IF(IGSVP(M,I).LT.1) GO TO 191I CALL XFSTQ(DSVP,DEPP - 0.02,0.18,0.20,O.0,0.0,QD)
CALL LABLQ('O',-1,QD,GRAPH,1)
CALL ADPTQ(DSVP,DEPP,1,GRAPH)

191 CONTINUE

CALL DISPQ(GRAPH,200.0)
CALL REHVQ(GRAPH)

L 94 CONTINUE
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CALL ADPTQ(RANL,O.U,U,GRAPI)
IF(RANGE.LE.O.0) GO TO 199
CALL ADPTQ(RANGE/DELRAN,-OEPL,O,GRAPH)
CALL ADPTQ(RANGE/DELRAN,O.0,I,GRAPH)

199 CALL XFSTQ(O.O,0.O,i .0,1.*0 ,1.5*Pt,O.0,QD)
CALL AXISQ(DEPL,NDEP,O.O,DEPINC,O.13,-1 ,QD,GRAPH)
CALL XFSrQ(-O.66,-DISD,0.18,O.20,1 .5*PI,0.0,QD)
CALL LABLQ('HEIGHT - METERS',-15,QD,GRAPH,15)
IF(NRSVPS.LT.2) GO TO 232
READ(5,711) (RSVP(I), I - 1,NRSVPS)
DO 209 1 - 2,NRSVPS
RSV -RSVP(I)/DELRAN
CALL ADPTQCRSV,- DEPL - 1.O,O,GRAPH)
CALL ADPTQ(RSV ,0.*0,1, GRAPH)

209 CONTINUE
DISVP -DEPL + 1.0
NRSVPM -NRSVPS - 1
DO 217 I - 1,NRSVPM
RSV - O.5*(RSVP(-I1) + RSVP(I))/DELRAN
CALL EDINCH(I,TSVP(5),l)
CALL XFSTQ(RSV ,-DISVP ,O.18,O.20,O.O,O..O,QD)
CALL LABLQ(TSVP,-S.QD,GRAP{,5)

217 CONTINUE
CALL EDINCH(NRSVPS,TSVP(5),1)
RSV - O.5*(RANL*DELRAN +- RSVP(NRSVPS))/DELRAN
CALL XFSTQ(RSV,-DISVPO0.16,O. 16,O.0,0.0,QD)
CALL LABLQ(TSVP,-5,QD,GRAPH,5)
CALL DISPQ(GRAPH,200.O)
CALL REMVQ(GRAPH)
IFCNAUT.EQ.O) GO TO 227
WRITE(6,712) TITLE
GO TO 228

227 WRITE(6,713) TITLE
228 WRITE(b,714) (I,RSVP(I), I -1,NRSVPS)

IF(NAUT.EQ.0) GO TO 232
DO 231 1 -1,NRSVPS

231 aSVP(I) -6080.O*RSVPCI)/3.O

232 IF(NRBOT.LE.O) GO TO 264
READ(5,715) (BDEP(I),BRAN(I), I -1,NRBOT)
DO 911 I-1,NRBOT

911 BDEP(I)-HTMIAX-(BDEP(I)-IIN)
IF(METER.EQ.1) GO TO 238

C LINE ADDED BDEP STAYS AS METERS
DO 237 I - 1,NRBOT
ID -328.084*BDEP(I)

237 BDEP(I) - DFLOAT(ID)/100.0
238 XD -200.0*BRAN(1)/DELRAN

YD a- 200.0*BDEP(1)/DELDEP
CALL DRAWQ(XD,YD,O)
DO 245 I - 2,NRBOT
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XD - 200.O*BRAN(I)/DELRAN
YD - - Z00.0*BDEP(I)/DELDEP

CALL DRAWQ(XD,YD,1)
24J CONTINUE

CALL GDIIPQI IF(NAUT.EQ.O) GO TO 25U
DO 249 I1 1,NRBOT

249 BRAN(I) -6080.O*BRAN(I)/3.0g250 WRITE(6,716) TITLE
DEPHIN - BDEP(l)
IM - NRBOT - I
DO 260 I - I,IM
IP - I + 1
SLOPE(I) - (BDEP(I) - BDEP(IP))/(BRAN(IP) -BRAN(I))

XBRAN - 3.0*BRAN(I)/6080.OI WRITE(6,717) BDEP(I),XBRAN,BRAN(I) ,SLOPE(I)
IF(DEPMIN.LT.BDEP(IP)) GO TO 260
DEPHIN -BDEP(IP)

260 CONTINUEI XBRAN - 3.O*BRANCNRBOT)/6080.0
WRITE(6,7 17) BDEP(NRBOT) ,XBRAN,BRAN(NRBOT)
GO TO 2651264 DEPMIN - 100000.0

265 IFCNAUT.EQ.O) CO TO 267
DELR -6080.0*DELR/3.0

267 NRSVPS -NRSVPS + I

NPSVPCNRSVPS) - NPSVP(NRSVPS-1)
NRAY -I

270 READ(5 ,718) SD,NOSUR,NOBOT ,RA,RMAX1 SD-HTMAX-( SD-IITMIN)
IF(RMAX.LE.0.0) GO TO 611 f
IFCNAUT.EQ.O) GO TO 274
RMAX - 6080.O*RMAX/3.O

274 RSVP(NRSVPS) -RMAX + 3000.0
IFCMETER.EQ.0) CO TO 278

I ID - 328.084*SD3C SD - DFLOAT(ID)/I00.O
278 NSVP - NPSVP(l)

DO 281 1 - 1,NSVPI IF(SD - D(1,I))286,284,281
U281 CONTINUE

WRITE(6,719) SD,D(1 ,NSVP)
GO TO 270I284 K - I
GO TO 311

*286 K -I

N'R - 1
289 NPSVP(NR) - NPSVP(NR) + 1I NSVP a NPSVP(NR)
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GC - G(NR,J)
X - (SD - D(NR,J))/(D(NR,I) - D(NR,J))
VC - V(NR,J) + X*(V(NR,I) - V(NR,J))
KB - I + I
KOUNT - 0
DO 303 K - KB,NSVP
MK - NSVP - KOUNT
MN - MK - I
D(NR,MK) - D(NR,MN)
G(NR,MK) - G(NR,MN)
V(NR,MK) - V(NRMN)
IGSVP(NR,MK) - IGSVP(NR,MN)

303 KOUNT - KOUNT + I
D(NR,I) - SD
G(NR,I) - GC
V(NR,I) -VC
IGSVP(NR,I) - 0
NR -NR + 1
IF(NR.GT.NRSVPS) GO TO 311
IF(NPSVP(NR).GE.K) GO TO 289

i11 KREST - 0
NOANG - 0)
NOFIN - 0
NOM 0
NR -I
ANGLE(I) - RA
DEP(1) - SD
RC1) - 0.0

NSVP - NPSVP(NR)
THONE - 0.01745329252*RA
CSTH - DCOS(THONE)
SITH - DSIN(THONE)
TANTH - SITH/CSTH
VS - V(1,K)
SR - CSTH/VS
GI - GCI,K-1)

G12 - G(I,K)
GO To 335

330 IF(K.E. .I) GO TO 333
GI - FUNC(G(NiR,K-1 ),R(L-1) ,RSVP(NR) ,RSVP(NR*1) ,G(NR+1 ,K-1))
IF(DABS(GI).LT.O.0002) GI - 0.0

333 G12 - FUNC(C(NR,K),RCL-1),RSVP(NR).RSVPCNR+I),G(NR+11 K))
IF(DAIS(G12).LT.O.0002) G12 - 0.0

335 IIF(SITH)348,336,338
336 IF T.NPSVP(NR).AND.G12.LT.0.0) GO TO 348

*E.I.OR.GI.LE.O.0) GO TO 366
338 C +1.0

IF(K.GT.0) GO TO 346
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IF(NOSUR.GT-a) GO TO 526
K -K+ I

343 SITH - - SITU
TANTH - - TANTH
GO TO 330

346 GRAD - GI
GO TO 354

348 C =- 1.0
K K+ 1

IF(K.LE.NSVP) GO TO 353
K - K-I
IF(NOBOT)343) 343,526I353 GRAD -G12

354 IF(GRAD.NE.O.O) GO TO 373
TATH - DABs(sITH/CSTH)
IF(TATH.LT.O.OO1) GO TO 366
DD - DABS(D(NR,K) - DEP(L-1))
DRFT - DD/TATH
DR - DRFT
SIT112 - SITH
CSTH2 - CSTH

TANTH2 - TANTH
ANGLE(L) - ANGLE(L-1)
DEP(L) - D(NR,K)
GO TO 401

366 R(L) - RCL-1) + DELRI DEPCL) - DEP(L-1)
ANGLECL) - 0.0
SITH2 - SITH

CSTH2 - CSTH
TANTH2 - TANTH
IF(DEP(L) - DEPMIN)514,414,414

373 VS - VS +GRAD*(D(NR,K) - DEP(L-1))I CSTH2 - SR*VS
B - 1.0 - CSTH2**2
Y - DSQRTCDABSCB))

IF(Y.GE..O1) GO TO 382

TANTH2 - 0.0I GO TO 384
S82 tF(B.LT..) GO TO 393

SITH2 - C*Y
384 DR - DABS((SITH - SITH2)/(SR*GRAD))

ANGLE(L) - 57 .2 9577951*DARSIN(SITH2)

IF(DABS(ANGLE(L)).LE.85.0) GO TO 389
NOANG-I
GO TO 527

389 DEP(L) a DCNR,K)
R(L) - R(L-I) + DR
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TANTH2 - SITH2/CSTH2
GO TO 402

393 KREST - 1
DDEPT{ - (1.0 - CSTH)/(SR*GRAD)
VS - VS - GRAD*(D(NR,K) - DEP(L-1))
IC - C
K - K + IC
ANGLE(L) - 0.0
DEP(L - D(NR,K) + DDEPTH
DR - DABSC(SITk{/(SR*GRAD)))

401 R(L) - R(L-1) + DR
402 IF(DEP(L).GE.DEPMIN) GO TO 414

L-L + 1
IF(KREST.EQ.0) GO TO 515

405 DEP(L - D(NR,K)
ANGLE(L) - - ANGLE(L-2)
R(L) -R(L-1) + DR
SITH2 -- SITH
CSTI12 -CSTH

TANTH2 -- TANTH
IF(KREST.EQ.1) KREST - 0
IF(DEP(L).GE.DEPHIN) GO TO 414
GO TO 514

414 DO 418 I - 2,NRBOT
IF(R(L-1).GT.BRAN(I)) GO TO 418
IBOT - I - 1
GO TO 420

418 CONTINUE
GO TO 514

420 RC -DABS(BRAN(IBOT) - R(L))
RC2 -DABS(BRAN(IBOT+1) - RCL))

bIF(RC.LT.O.1.AND.DEP(L).EQ.BDEP(IBOT)) GO TO 425
IF(RC2.GE.O.1) GO TO 427
IF(DEPCL).NE.BDEP(IBOT+1)) GO To 427

425 NOM - I
GO TO 527

427 ANGX 0 .01745329252*ANGLE(L-1)
SITHX -DSIN(ANGX)
CSTHX -DCOS(ANGX)
TANTHX -SITHX/CSTHX
IF(SITHX.LT.O.O) GO To 435
IF(DEP(L-1).GT.BDEP(IBOT)) GO TO 434
IFCDEPCL-1).LT.BDEPCIBOT+1)) Go To 511

434 IF(SLOPE(IBOT))511,511 ,441
435 IF(DEP(L).GT.BDEP(IBOT)) GO To 441

IF(DEP(L).GT.BDEP(IBOT+1)) GO TO 441
IF(SLOPE(IBOT).EQ.O.O.AND.DEP(L).EQ.BDEP(IBOT)) GO TO 477
IF(ANGLE(L).NE.O.O) GO TO 511
KREST - 1
GO TO 511
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441 DM - BDEP(IBOT) - DEP(L-1) - SLOPECIBOT)*(R(L-1) -BRAN(IBOT))

IF(GRAD.NE.O.O) GO TO 446
IF(SLOPE(IBOT).EQ.TA4THX) GO TO 511
DELX - - DM/(TANTHX - SLOPE(IBOT))
GO TO 458

446 GAM - 1.O/CSR*GRAD)
ALPH - - GAM*SITHX
BETA - - GAM*CSTHX
AQ -SLOPE(IBOT)**2 + 1.0
BQ - 2.0*(- SLOPE(IBOT)*(DM - BETA) - ALPH)
CQ -ALPH**2 + (DM - BETA)**2 - GAM**2
DISC - BQ**2 - 4.O*AQ*CQ
IF(DISC.LT.O.O) GO TO 511

IF(GRAD.GT.O.O) GO TO 457
DELX a (- BQ + DSQRT(DISC))/(2.O*AQ)
GO TO 458I457 DELX - (- BQ - DSQRTCDISC))/(2.O*AQ)

458 IF(DABS(DELX - DR).LE.O.1) GO TO 414
IF(DELX.LT.0.O) GO TO 511
XP - R(L-1) + DELXIFX.TBA(BO) OT 1
IFCXP.LT.BRAN(IBOT+)) GO TO 511

IF(XP.GT.R(L)) GO TO 511I DELY - - DELX*SLOPECIBOT) + DM
R(L) - XP
DEP(L) -DEP(L-1) + DELY
VS - VS -GRAD*(D(NR,K) - DEP(L))
CSTH2 - SR*VS
IF(CSTH2.GT.I.O) GO TO 4/5
IF(ANGLE(L-1).EQ.0.O) C - - C
SITH2 -C*DSQRT(I.0 - CSTH2**2)
TANTH2 -SITH2/CSTH2
ANGLE(L) - 57.29577951 *DARSINCSITH2)f474 IF(DABS(ANGLE(L)).LE.85.O) GO TO 477

475 NOANG - 1
GO TO 527

477 IF(R(L).GT.RHAX) GO TO 527I IF(NOBOT.EQ.1) GO TO 527
L -L+ I
DEP(L) - DEP(L-1)I R(L) - R(L-1)
ANGLE(L - 114.59156*DATAN(SLOPE(IBOT)) -ANGLE(L-1)

IF(DABS(ANGLE(L)).LE.85.O) GO TO 486
NOANG - 1

GO TO 527
486 THONE - O.01745329*ANGLECL)

SITH - DSIN(THONE)
CSTH - DCOS(THONE)
TANTH -SITH/CSTH T 9

IFGA.Q00 OT 9



IF(KREST.EQ.O) GO TO 495
KREST - 0
IF(SITH2.LE.0.O.AND.SITH.GT.O.O) K a K + I
GO TO 497

495 IF(SITH.GT.O.O.AND.SITH2.GT.O.O) K - K + I
IF(SITH.LT.O.0.AND.SITH2.LT..) K - K - 1

497 L. L + 1
SR CSTH/VS
IF(GRAD.NE.O.O) GO TO 330
IF(SITH.GT.O.O.AND.SITH2.LT.O.O) K -K - I
DD DEP(L-1) - D(NR,K)
DRFT mDABS(DD/TANTH)
DR - DRFT
DEPWL- D(NR,K)
R(L) -R(L-1) + DR
ANGLE(L) - ANGLE(L-1)
SITH2 -SITIL
CSTH2 -CSTH
TANTI12 - TANTH
GO TO 514

11 IF(R(L).LT.BRAN(IBOT+1)) GO TO 514
IBOT - IBOT + 1
GO TO 42/

.14 L aL+ I

JI) IF(L.LT.40UU) GO TO 51I8
NOFLN - I
GO TO J2b

,I IF(R(L-1).GE.RMAX) GO TO 526
IF(KREST.EQ.1) GO TO 405
SITH - SITH2
CSTH - CSTH2
TANTH - TANTH2
IF(R(L-1).LE.RSVP(NR+1)) GO TO 330
NR a UZR + I
IF(NR.LT.URSVPS) GO TO 330

J26 L - L. - I
t27 IF(NAUT.Eq.O) GO TO 530

DO 529 1 - I,L
529 R(I) - 3.O*R(I)/6080.O
530 IF(MOPR.GT.O) GO TO 549

IB - I
NPAGE -i

33 WRITE(6, 720) NPAGE,TITLE.SD,RA
If(NAUT.EQ.O) GO TO 537
WRITE(6,721 )
GO TO 538

537 WRITE(6,722)
538 IL a I3 + 43

IF(IL.LE.L) GO TO 541
IL L



54.1 WRITE(6,723) (DEP(I),R(I),ANGLE(I), I -IB,IL)
IB - IL + 1
IF(IB - L)544,547,552

544 WRITE(6,710)
NPAGE - NPAGE + 1

GO TO 533
547 WRITE(6, 723) DEP(L) ,R(L) ,ANGLE (L)

GO TO 552
549 IF(NO?1O.GT.1) GO TO 551

WRITE(6,724) TITLE,SD
551 NONO - 14011 + 1
552 1F(NOFIN.EQ.0) GO TO 554I WRITE(6,725) RA
554 IF(NOM.EQ.O) GO TO 556

WRITE (6, 726) RAI 556 I1F(SOANG.EQ.0) GO TO 558
WRITE(6,727) RA

558 WRITE(6,728) RAL
RMAXL - R14AX + 0.5*RANINC
IF(R(L).LE.RMAXL) GO TO 566

561 DEP(L) - DEPCL-I) + (DEP(L) -DEPCL-1))*(RMAX -R(L-1))/(R(L)-

I (L-I))I R(L) - RMAX
IF(R(L-1).LE.RMAX) GO TO 566
L -L - I
GO TO 561

566 IF(NRAY.LT.2) GO TO 571
IF(NOBOT.LT.1) GO TO 569

I569 NRAY 1
GO TO 572

571 NRAY - 2
572 PRAN - R(L)/DELRAN + 0.05

PDEP - - DEP(L)/DELDEP - 0.05
IF(NRAY.LT.2) GO TO 601

57 , XD - 200.O*R(1)/DELRANI YD - - 200.0*DEP(1)/DELDEP
CALL DRAWQ(XDYD,O)
IB - 2
IF(L.GT.990) GO TO 582

IL - L
GO TO 583

582 IL - 990I583 DO 587 I - IB,IL
XD - 200.O*R(I)/DELRAN
YD - - 200.O*DEP(I)/DELDEP
CALL D)RAWQ(XD,YD,I)

587 CONTINUE
CALL GDMPQ

lB - IL + 1
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IF(IB.GT.L) GO TO 595
IL - IL + 990
IF(IL.LE.L) GO TO 583
IL - L
GO TO 583

595 IF(NRAY.LT.2) GO TO0 270
596 CALL XFSTQ(PRAN,PDEP. 11,0. 13,O.O,O.O,QD)

CALL NMBRQ(RA,1,1,QD,GRAPH)
CALL DISPQ(GRAPH,20O.0)
CALL REMVQ(GRAPH)
GO TO (575,270),NRAY

601 N -L/2

DO 609 1 - 1,N
K L- I+ I
TR - R(I)
TD - DEP(I
R(I) - R(K)
DEPM1 - DEP(K
R(K) -TR

609 DEP(K - TD
GO TO 596

611 READ(5,704) DIST
IF(DIST.LE.O.O) GO TO 615
CALL ADPTQ(DIST,0.0, O,GRAPH)
GO To 616

615 CALL ADPTQ(O.0,O.0,0,GRAPH)
616 CALL DISPQ(GRAPH,200.O)

CALL *.OOVQ(200.0*DIST,0.0)
CALL REMVQ(GRAPII)
NOMO -1I
IF(DIST.GT.O.0) GO TO 10
WRITE(6, 729)
STOP

701 FORMAT(40A1)
702 FORMAT(IL,13,211,F4.0,12,3I1, 3(12,F8.2,F5. 1),2F10.4)
703 FORMAT(711)
704 FORMAT (4F 10. 4, 211)
705 FORMAT(lH1,121X,'CPAGE',13,/lH0,88X,40A1,/89X'NUMBER OF POINTS Ws,

1 ' SVP',12,' - ',14)
706 FORZIAT(89X,'VELOCITIES COMPUTED-)
707 FORMAT(IHO,61X,'SVP ',I1,/1HO,33X,'DEPTH TEMPERATURE',3X,

1 'SALINITY VELOCITY VELOCITY GRADIENT'/35X,'(FT)',6X.
2 '(DEC F)',6X,'(?PT)',5X,(T/SEC)',6X,(FTSECIFT)' I

708 FORIIAT(LH ,29X,F9.1,2Fl2.2,FI3.3,/80X,F12.7)
709 FORMAT(IH ,29X,F9.1,25X,F12.3,/80X,F12.7)
710 FORMAT ( I 0,58X, -(CONT INUED))
711 FORflAT(6FIO.4)
712 FORMAT(1111,88X,40Al,/1H0,58X,'SVP IANGES'/1HO, 55X,'SVP ,8X,

I 'RANGE'/68X,'(NM)')
713 FURMAT(IHI,88X,40A1,/IHO,58X,-SVP RANGES'/1H0, 55X,'SVP',8X,
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I 'RANGE'/67X,-(YDS)')I 714 FORMAT(IHO, 55X, 12,714.1)
715 FORMAT(2F 10.4)
716 FORMAT(IHI,88X,40A1,/IH0,47X,'BOTTOM DEPTHS, RANGES AND SLOPES'

I /lH0,44X,'DEPTH',12X,'RANGE',12X,'SLOPE-/46X,' (FT)',7X,' (NM)',7X,I 2 '(YDS)' /)
717 FORMAT(40X,FII. 1,FIO. 1,712. 1,173X,F11. 4)
718 FORMAT(F8.2,2I1, 2710.4)
719 FORMAT(1H1,30X,'REQUESTED DEPTH OF',F7.1,' FT. IS GREATER THAN '

1 'LAST GIVEN SVP DEPTH OF',F7.1,' FT.')
720 FORMAT(1111, 121X,-PAGE-,I3,/LHO,88X,40A1,/89X,'SOURCE DEPTH-'

1 F8.1,' FT.-/89X,'INITIAL ANGLE -',F8.3,- DEG.'/IHO,56X,'SOUND RAY

2 PATH'/IHO, 49x,'DEPTH' ,7X,'RANGE' ,7X,'ANGLE')
721 FORKIAT(51X,-(FT)',8X,'(NM)-,7X,'(DEG)' I
722 FORMAT(51X,'(FT)',7X,-(YDS)',7X,'(DEG)' II 723 FORMAT(45X,FlO. 1,F12. 1,712.2)
724 FORMAT(IH1,88X,40A1,/89X,'SOURCE DEPTH -',F8.1,' FT.'/lH0,49X,

1 'NUMBER OF POINTS IN RAY PATHS AND'/40X,'RAYS THAT TERMINATE '

2 'BEFORE REACHING DESIRED RANGE')

725 FORMAT(IHO,40X,FS.1,' DEG. RAY TERMINATED. MORE THAN 4000 POINTS')
726 FOR'1AT(lHO,4OX,F5.1,' DEC. RAY TERMINATED. HIT BOTTOM BREAK.')

1 727 FORMAT(lHO,40X,F5.1,' DEG. RAY TERMINATED. ANGLE GREATER THAN 85',
U I ' DEC.')

728 FORMAT(IHTO,40X,'NUMBER OF POINTS IN',F5.1,' DEC. RAY -',15)
729 ?ORllAT(11U,50X,'RUN COKPLETED-)

I END



I Appendix C

The input for the eigenray and ray-tracing programs is described

here. First, the input to the eigenray routine contained in Appendix

A is given.I
Eigenray Program Operation - Sequence of Data Cards

Columns Format

1. Title card

i 1-40 title 10A4

2. Sound velocity profile control card 911
o meters

NDRT - depth given in
1 feet

0 m/sec
NVFT sound velocity in ft/sec

0 C
3 NTF - temperature given in degrees

0 m/sec
4 NWV - wind velocity given in

1 ft/sec

0 meters
5 NRFT - range given inj 1 feet

0 calculated
6 IVEL - sound velocity

1 given

80 not given7 ITEMP - temperaturegie

1 givenonot given

IRHM relative humidity
I given

3. Sound velocity profile data cards - must be given as 4FI0.4,Ix,Il

depths from highest level to ground surface

g 1-10 DEP - depth

11-20 TEMP - temperature

21-30 VEL - sound velocity

31-40 WV - wind velocity

42 NOMO al to indicate last SVP data cardI
I
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4. Ground loss card II,4X,2F5.1

I NBL - number of runs with different ground losses

6-10 POR - -orocity of ground

11-15 BL - ground loss coefficient

5 Time integration wiitdow card F1O.3

1-10 TWIN - time window

6. Ray path parameter card 7F10.3

1-10 SD - source depth

11-20 TD - target depth

21-30 RANGE - range from source to receiver

31-40 ANGMAX - maximum initial ray angle in degrees

41-50 ANGMIN - minimum initial ray angle

51-60 FREQ - frequency

61-70 RHM - relative humidity

All input must be consistant with the units specified in the

control card (2).

The input for the ray-tracing routine is given here. It is noted

that the ray-tracing routine graphics are systen dependent. T.e data

to be plotted is output using the following packages: XFSTQ,LABLQ,

AXISQ, DISPQ, REMVQ, EDINCH, ADPTQ, DRAWQ, GDMPQ, NMBRQ, MOOVQ.

These are packages available in the PSU computer center's accessible

library. The output is then plotted onto a Tektronix 4662 plotter

using the package CONTK.

Ray-Tracing Program Operation - Sequence of Data Cards

Columns Format

1. Title card

1-40 title 40AI
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2. Sound velocity profile control card

I NRSVP - number of SVP's - maximum II

of 5

2-4 NRBOT - number of ground height 13

coordinates - maximum of 150

minimum of 2

5 METER I 1 all heights given in meters 11

6 NAUT = blank all ranges given in meters I1

7-10 DELR - distance ray travels when ray F4.O

angle is zero and there is no

refraction

11-12 NOUT - 7) 12

blank - uses SVP's from previous run
13 NEWSVP - Il

1 - new SVP~s

14 NOPR - ray paths II
1 does not print

blank "SOUND RAY PATHS" 11
15 NOAD - writes on plots1 "SOUND RAY PATHS AND

INTENSITY CONTOURS"

and Alpha headings

16-17 NRAN - number of divisions on range scale 12

18-25 RANINC - increment on range scale - meters F8.2

26-30 RANL - length in inches of range scale F5.1

31-32 NDEP - number of divisions on height scale 12

33-40 DEPINC - increment on height scale - meters F8.2

41-45 DEPL - length in inches of height scale F5.1

46-47 NSV - number of divisions on SVP scale 12

48-55 SVINC - increment on SVP scale - m/sec F8.2

56-60 SVL - length in inches of SVP scale F5.2

61-70 SVMIN - minimum value on SVP scale FIO.4

(generally 335 m/sec)

71-80 RANGE - range to reference line in meters FIO.4

(if blank-no reference line printed)

3. Alpha heading card (omitted if NOAD is blank)

1-20 ALPD - graph heading 20A1

!
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One set of cards 4 and 5 must be given for each sound velocity profile

4. SVP control card 711

I NODEP - blank

2 NODFT - 1

blank temperature given3 NOTEMP -

1 sound velocity in still air given

4 NOTF- I

5 NOVEL = blank

6 NOVFT- I

7 NOSAL = blank

5. Sound velocity profile cards - maximum of 250 4FI0.4,211

for each SVP

1-10 D - height meters

11-20 TF - temperature Celsius

21-30 WV - wind velocity m/sec

31-40 SAL - blank
blank .nterpolated

41 IGSVP b SVP value

blank not last SVP card

42 NOMO - indicates
I last SVP card

6. Location of SVP'8 card (first always 0.0) 5FI0.4

(omitted if only one SVP)

1-10 RSVP(1) = 0.0

11-20 RSVP(N) - locates SVP meters

etcetera

/. Ground height coordinate cards (must be NRBOT cards, 2F10.4 j
value given on card 2) (must be in order of

increasing range)

1-10 BDEP - height meters

11-20 BRAN - range meters

!

~ :'
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1 8. Ray parameter cards 1S.2,211,2F10.4

1-8 SD - source height meters

j9 NOSUR- I
10 NO050 - blank

11-20 A - initial angle in degrees

21-30 MAX - maximmm range In meters

f 9. Blank card

I
I
I
i
i
i
!
I

I
I
I 2

i,, u



FILMED

DI




